首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate linear and nonlinear space-time minimum mean-square-error (MMSE) multiuser detectors for high data rate wireless code-division multiple-access (CDMA) networks. The centralized reverse-link detectors comprise a space-time feedforward filter and a multiuser feedback filter which processes the previously detected symbols of all in-sector users. The feedforward filter processes chip-rate samples from a bank of chip-matched filters which operate on the baseband outputs from an array of antennas. We present an adaptive multiuser recursive least squares (RLS) algorithm which determines the MMSE adjusted filter coefficients with less complexity than individual adaptation for each user. We calculate the outage probabilities and isolate the effects of antenna, diversity, and interference suppression gains for linear and nonlinear filtering and for CDMA systems with varying levels of system control (e.g., timing control, code assignment, cell layout). For eight users transmitting uncoded 2-Mb/s quadrature phase-shift keying with a spreading gain of eight chips per symbol over a fading channel with a multipath delay spread of 1.25 μs, the performance of a three-antenna feedforward/feedback detector was within 1 dB (in signal-to-noise ratio per antenna) of ideal detection in the absence of interference. By training for 10% of a 5-ms frame, RLS adaptation enabled the same detector to suffer less than a 0.5-dB penalty due to the combined effects of imperfect coefficients and error propagation. The advantage of nonlinear feedforward/feedback detection over linear feedforward detection was shown to be significantly larger for a CDMA system with enhanced system control  相似文献   

2.
The problem of joint multiuser detection and channel estimation in frequency-selective Rayleigh fading CDMA channels is considered. First the optimal multiuser detector for such channels is derived, which is seen to have a computational complexity exponential in the product of the number of users and the length of the transmitted data sequence. Two suboptimal detectors are then developed and analyzed, both of which employ decorrelating filters at the front-ends to eliminate the multiple-access interference and the multipath interference. The symbol-by-symbol detector uses a Kalman filter and decision feedback to track the fading channel for diversity combining. The per-survivor sequence detector is in the form of the Viterbi algorithm with the trellis updates being computed by a bank of Kalman filters in the per-survivor fashion. Both suboptimal detectors require the knowledge of all waveforms of all users in the channel and the channel fading model parameters. Adaptive versions of these suboptimal detectors that require only the knowledge of the waveform of the user of interest are then developed. The adaptive receivers employ recursive-least-squares (RLS) minimum-mean-square-error (MMSE) filters at the front-end to mitigate the interference, and use a bank of linear predictors to track the fading channels. It is shown that the front-end RLS-MMSE filters can be implemented using systolic arrays to exploit massively parallel signal processing computation, and to achieve energy efficiency. Finally, the performance of the suboptimal detectors and their adaptive versions are assessed by simulations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Iterative equalization using optimal multiuser detector and optimal channel decoder in coded CDMA systems improves the bit error rate (BER) performance tremendously. However, given large number of users employed in the system over multipath channels causing significant multiple-access interference (MAI) and intersymbol interference (ISI), the optimal multiuser detector is thus prohibitively complex. Therefore, the sub-optimal detectors such as low-complexity linear and non-linear equalizers have to be considered. In this paper, a novel low-complexity block decision feedback equalizer (DFE) is proposed for the synchronous CDMA system. Based on the conventional block DFE, the new method is developed by computing the reliable extrinsic log-likelihood ratio (LLR) using two consecutive received samples rather than one received sample in the literature. At each iteration, the estimated symbols by the equalizer is then saved as a priori information for next iteration. Simulation results demonstrate that the proposed low-complexity block DFE algorithm offers good performance gain over the conventional block DFE.  相似文献   

4.
This paper presents blind channel estimation for downlink W-CDMA system that employs chaotic codes and Walsh codes for spreading information bits of the multiple users. In a W-CDMA system, while transmitting over multipath channels, both intersymbol interference (ISI) as a result of Inter Chip Interference and multiple access interference (MAI) cannot be easily eliminated. Although it is possible to design multiuser detectors that suppress MAI and ISI, these detectors often require explicit knowledge of at least the desired users’ signature waveform. Earlier work focused on a subspace based channel estimation algorithm for asynchronous CDMA systems to estimate the multiple users’ symbols, where only AWGN channel was considered. In our work, we study a similar subspace-based signature waveform estimation algorithm for downlink W-CDMA systems, which use chaotic codes instead of pseudo random codes, that provide estimates of the multiuser channel by exploiting structural information of the data output at the base station. In particular, we show that the subspace of the (data+noise) matrix contains sufficient information for unique determination of channels, and hence, the signature waveforms and signal constellation. We consider Rayleigh and Rician fading channel model to quantify the multipath channel effects. Performance measures like bit error rate and root mean square error are plotted for both chaotic codes and Walsh codes under Rayleigh and Rician fading channels.  相似文献   

5.
In code-division multiple-access systems transmitting data over time-varying multipath channels, both intersymbol interference (ISI) and multiple-access interference (MAI) arise. In this paper, we address interference suppression, multipath diversity and processing gain protection for multiuser detection with less noise enhancement by using a parallel cancelling scheme. The proposed detector consists of a RAKE filter, forward filter, and feedback filter with different functions for each filter. The RAKE filter increases the signal-to-noise ratio by taking the advantage of multipath and code diversities. The forward filter is proposed, in combination with the feedback filter, to remove the effects of MAI and ISI by parallel cancellation. In order to avoid performance deterioration due to unreliable initial estimation in the parallel cancellation, a cost function with proper weighting is introduced to improve the performance of the proposed detector. In the proposed design method, a recursive least square algorithm is employed to update the tap-coefficients of all filters for MAI and ISI cancellation. Finally, the performance of the proposed detector is analyzed and compared with other detectors  相似文献   

6.
A robust iterative multicarrier code-division multiple-access (MC-CDMA) receiver with adaptive multiple-access interference (MAI) suppression is proposed for a pilot symbols assisted system over a multipath fading channel with frequency offset. The design of the receiver involves a two-stage procedure. First, an adaptive filter based on the generalized sidelobe canceller (GSC) technique is constructed at each finger to perform despreading and suppression of MAI. Second, pilot symbols assisted frequency offset estimation, channel estimation and a RAKE combining give the estimate of signal symbols. In order to enhance the convergence behavior of the GSC adaptive filters, a decisions-aided scheme is proposed, in which the signal waveform is first reconstructed and then subtracted from the input data of the adaptive filters. With signal subtraction, the proposed MC-CDMA receiver can achieve nearly the performance of the ideal maximum signal-to-interference-plus noise ratio receiver assuming perfect channel and frequency offset information. Finally, a low-complexity partially adaptive (PA) realization of the GSC adaptive filters is presented as an alternative to the conventional multiuser detectors. The new PA receiver is shown to be robust to multiuser channel estimation errors and offer nearly the same performance of the fully adaptive receiver.  相似文献   

7.
The problem of blind demodulation of multiuser information symbols in a high-rate code-division multiple-access (CDMA) network in the presence of both multiple-access interference (MAI) and intersymbol interference (ISI) is considered. The dispersive CDMA channel is first cast into a multiple-input multiple-output (MIMO) signal model framework. By applying the theory of blind MIMO channel identification and equalization, it is then shown that under certain conditions the multiuser information symbols can be recovered without any prior knowledge of the channel or the users' signature waveforms (including the desired user's signature waveform), although the algorithmic complexity of such an approach is prohibitively high. However, in practice, the signature waveform of the user of interest is always available at the receiver. It is shown that by incorporating this knowledge, the impulse response of each user's dispersive channel can be identified using a subspace method. It is further shown that based on the identified signal subspace parameters and the channel response, two linear detectors that are capable of suppressing both MAI and ISI, i.e., a zero-forcing detector and a minimum-mean-square-error (MMSE) detector, can be constructed in closed form, at almost no extra computational cost. Data detection can then be furnished by applying these linear detectors (obtained blindly) to the received signal. The major contribution of this paper is the development of these subspace-based blind techniques for joint suppression of MAI and ISI in the dispersive CDMA channels  相似文献   

8.
Group-blind multiuser detectors for uplink code-division multiple-access (CDMA) were recently developed by Wang and Host-Madsen. These detectors make use of the spreading sequences of known users to construct a group constraint to suppress the intracell interference. However, such techniques demand the estimation of the multipath channels and the delays of the known users. In this paper, several improved blind linear detectors are developed for CDMA in fading multipath channels. The proposed detectors utilize the correlation information between consecutively received signals to generate the corresponding group constraint. It is shown that by incorporating this group constraint, the proposed detectors can provide different performance gains in both uplink and downlink environments. Compared with the previously reported group-blind detectors, our new methods only need to estimate the multipath channel of the desired user and do not require the channel estimation of other users. Simulation results demonstrate that the proposed detectors outperform the conventional blind linear multiuser detectors.  相似文献   

9.
There is great interest in the use of decision feedback equalization (DFE) to mitigate the effects of intersymbol interference (ISI) on wireless multipath fading channels. The coefficients of a DFE feedforward filter (FFF) and feedback filter (FBF) are usually adjusted based on the minimum mean square error (MMSE) criterion. The equalizer coefficients can be calculated by recursive adaptation or by direct computation based on a channel estimate. The equivalence of the simultaneous and separate MMSE optimization of the FFF and FBF of a finite-length DFE is established  相似文献   

10.
Multipath fading severely limits the performances of conventional code division multiple-access (CDMA) systems. Since every signal passes through an independent frequency-selective fading channel, even modest cross-correlations among signature sequences may induce severe near-far effects in a central multiuser receiver. This paper presents a systematic approach to the detection problem in CDMA frequency-selective fading channels and proposes a low complexity linear multiuser receiver, which eliminates fading induced near-far problem.We initially analyze an optimal multiuser detector, consisting of a bank of RAKE filters followed by a dynamic programming algorithm and evaluate its performance through error probability bounds. The concepts of error sequence decomposition and asymptotic multiuser efficiency, used to characterize the optimal receiver performance, are extended to multipath fading channels.The complexity of the optimal detector motivates the work on a near-far resistant, low complexity decorrelating multiuser detector, which exploits multipath diversity by using a multipath decorrelating filter followed by maximal-ratio combining. Analytic expressions for error probability and asymptotic multiuser efficiency of the suboptimal receiver are derived that include the effects of multipath fading, multiple-access interference and signature sequences correlation on the receiver's performance.The results indicate that multiuser detectors not only alleviate the near-far problem but approach single-user RAKE performance, while preserving the multipath diversity gain. In interference-limited scenarios multiuser receivers significantly outperform the RAKE receiver.This paper was presented in part at the Twenty-Sixth Annual Conference on Information Sciences and Systems, Princeton, NJ, March 1992 and MILCOM'92, San Diego, CA, October 1992. This work was performed while author was with the Department of Electrical and Computer Engineering, Northeastern University, Boston, USA.  相似文献   

11.
Multiple-access interference (MAI) and time-varying multipath effects are the two most significant factors limiting the performance of code-division multiple-access (CDMA) systems. While multipath effects are exploited in existing CDMA systems to combat fading, they are often considered a nuisance to MAI suppression. We propose an integrated framework based on canonical multipath-Doppler coordinates that exploits channel dispersion effects for MAI suppression. The canonical coordinates are defined by a fixed basis derived from a fundamental characterization of the propagation effects. The basis corresponds to uniformly spaced multipath delays and Doppler shifts of the signaling waveform that capture the essential degrees of freedom in the received signal and eliminate the need for estimating arbitrary delays and Doppler shifts. The framework builds on the notion of active coordinates that carry the desired signal energy, facilitate maximal exploitation of channel diversity, and provide minimum-complexity MAI suppression. Progressively powerful multiuser detectors are obtained by incorporating additional inactive coordinates carrying only MAI. Signal space partitioning in terms of active/inactive coordinates provides a direct handle on controlling receiver complexity to achieve a desired level of performance. System performance is analyzed for two characteristic time scales relative to the coherence time of the channel. Adaptive receiver structures are identified that are naturally amenable to blind implementations requiring knowledge of only the spreading code of the desired user.  相似文献   

12.
We develop an iterative code-division multiple-access (CDMA) receiver for multipath block-fading channels in the uplink. The mean-square error (MSE) of the channel estimates is reduced iteratively by using soft data estimates as additional pilots. The multiuser detector performs parallel interference cancellation (PIC) with subsequent linear filtering. We consider a single-user matched filter (SUMF) and develop a low-complexity linear minimum MSE (LMMSE) filter for intersymbol interference (ISI) channels that allows for 33% more users than the SUMF. We investigate two choices of training sequences for initial channel estimation. The first is a random pilot symbol sequence modulated by a short spreading sequence (RAND), and the second is a perfect root of unity sequence (PRUS) used as long sounding chip sequence. We observe that the RAND scheme approaches the single-user bound up to 2 dB and in case of PRUS up to 1 dB at a target bit error rate (BER) of$10^-3$. Further, several channel estimators are developed that use various combinations of soft decision symbols and statistical a priori knowledge about the channel. These are the approximated least-squares (ALS), approximated linear MMSE (ALMMSE), and linear MMSE (LMMSE) estimators. The iterative estimators show an improvement of 2.5 and 5 dB with PRUS and RAND pilots, respectively, over estimators that do not exploit soft feedback symbols at a BER of$10^-3$. The ALS is sacrificing less than 0.6 dB to obtain a BER of$10^-3$in a system at load 1.5 when compared with the ALMMSE and LMMSE schemes. The load is understood as the ratio of the number of users to the spreading factor. This paper shows that significant improvements in system capacity can be achieved in multipath scenarios with low-complexity choices of multiuser detectors and channel estimators.  相似文献   

13.
In this letter, we present a deterministic multiuser code-timing estimator for asynchronous direct-sequence (DS) code-division multiple-access (CDMA) systems with aperiodic long spreading codes and band-limited chip waveforms. A key feature of the proposed estimator is that it captures and capitalizes a deterministic structure of the overall interference, namely multi-access interference (MAI) and intersymbol interference (ISI), in the frequency domain. This allows complete interference elimination in a deterministic manner, which is in general more effective and data-efficient than stochastic approaches. Numerical results show that the proposed estimator can achieve fast acquisition; it is also near-far resistant, providing accurate code acquisition for even overloaded systems (i.e., systems with more users than the processing gain) in multipath fading environments.  相似文献   

14.
This paper proposes and investigates a novel code-division multiple-access (CDMA) system. This two-layer spreading CDMA (TLS-CDMA) system can combat multiple-access interference (MAI) and multipath interference (MPI) simultaneously and effectively in a multiuser scenario over frequency-selective fading channels. Moreover, a two-layer cell-specific scrambling code is proposed for the TLS-CDMA system in the uplink transmission to efficiently suppress other-cell interference (OCI) in a multicell environment. The proposed TLS-CDMA system allows the two-layer spreading factors to be adapted to the cell structure, the channel conditions, and the number of active users to support variable data rate transmission among multiple users. The superior performance of the TLS-CDMA system over other uplink transmission systems, such as cyclic prefix CDMA (CP-CDMA) and multicarrier CDMA (MC-CDMA), is also illustrated using performance analysis and simulation results.   相似文献   

15.
We present an efficient blind algorithm for estimating the code timing of a desired user in an asynchronous direct-sequence code-division multiple-access (DS/CDMA) system over frequency-nonselective-fading channels. The proposed algorithm acquires the code timing explicitly and results in a near-far resistant minimum mean-squared error (MMSE) demodulation without requiring the knowledge of the timing information, amplitudes, and transmitted symbols of all transmissions. The only required knowledge is the information of the signature sequence used by the desired transmission. Several computer simulations are done for additive white Gaussian channels, Rayleigh fading channels, and two-ray Rayleigh fading multipath channels, respectively. Numerical results show that the new algorithm is near-far resistant to the multiple-access interference (MAI) in the DS/CDMA system  相似文献   

16.
In code-division multiple-access (CDMA) systems transmitting over time-varying multipath channels, both intersymbol interference (ISI) and multiple-access interference (MAI) arise. The conventional suboptimum receiver consisting of a bank of matched filters is often inefficient because interference is treated as noise. The optimum multiuser detector is too complex to be implemented at present. Four suboptimum detection techniques based on zero forcing (ZF) and minimum mean-square-error (MMSE) equalization with and without decision feedback (DF) are presented and compared. They combat both ISI and MAI. The computational complexity of all four equalizers is essentially the same. All four equalizers are independent of the size of the data symbol alphabet. It is shown that the performance of the MMSE equalizers is better than that of the corresponding ZF equalizers. Furthermore, the performance of the equalizers with DF is better than that of the corresponding equalizers without DF. The impairing effect of error propagation on the equalizers with DF is reduced by channel sorting  相似文献   

17.
多径CDMA信道下最小均方盲空时多用户检测   总被引:1,自引:0,他引:1  
焦李成  郑建忠 《电子学报》2002,30(7):981-985
本文首先在码片匹配滤波的基础上为多径CDMA信道环境的接收机提出四种数据选择方案,分析了各种数据方案对多址干扰与码间干扰的影响;接着提出了基于Rosen梯度投影实现的最小均方盲空时多用户检测方法并分析了四种数据选择方案对其运算复杂度的影响;最后通过仿真实验结果的分析比较给出较合理的实现方法,该方法在降低运算量具有一定的优势,因而更加具有实用意义.  相似文献   

18.
Direct-sequence/code-division multiple-access (DS/CDMA) communication systems equipped with adaptive antenna arrays offer the opportunity for jointly effective spatial and temporal (code) multiple-access interference (MAI) and channel noise suppression. This work focuses on the development of fast joint space-time (S-T) adaptive optimization procedures that may keep up with the fluctuation rates of multipath fading channels. Along these lines, the familiar S-T RAKE processor is equipped with a single orthogonal S-T auxiliary vector (AV) selected under a maximum magnitude cross-correlation criterion. Then, blind joint spatial/temporal MAI and noise suppression with one complex S-T degree of freedom can be performed. This approach is readily extended to cover blind processing with multiple AVs and any desired number of complex degrees of freedom below the S-T product. A sequential procedure for conditional AV weight optimization is shown to lead to superior bit-error-rate (BER) performance when rapid system adaptation with limited input data is sought. Numerical studies for adaptive antenna array reception of multiuser multipath Rayleigh-faded DS/CDMA signals illustrate these theoretical developments. The studies show that the induced BER can be improved by orders of magnitude, while at the same time significantly lower computational optimization complexity is required in comparison with joint S-T minimum-variance distortionless response or equivalent minimum mean-square-error conventional filtering means  相似文献   

19.
Blind multiuser channel estimation in asynchronous CDMA systems   总被引:10,自引:0,他引:10  
In asynchronous code division multiple access (A-CDMA) systems transmitting over multipath channels, both intersymbol interference (ISI) as a result of interchip interference (ICI) and multiple access interference (MAI) cannot be easily eliminated. Although it is possible to design multiuser detectors that suppress MAI and ISI, these detectors often require explicit knowledge of at least the desired users' signature waveform. Recently, Liu and Xu (see Proc. 29th Asilomar Conf. Signals, Systems and Computers, 1996) introduced a blind estimation algorithm for synchronous CDMA (S-CDMA) systems to estimate the multiuser channels. However, this algorithm cannot be directly applied to an asynchronous CDMA (A-CDMA) system. In this paper, we study a similar blind estimation scheme that provides estimates of the multiuser channels by exploiting the structure information of the data output and the users' delays. In particular, we show that the subspace of the data matrix contains sufficient information for unique determination of channels and, hence, the signature waveforms. By utilizing antenna arrays, we extended our approach to overloaded systems, where the number of users may exceed the spreading factor  相似文献   

20.
The presence of both multiple-access interference (MAI) and intersymbol interference (ISI) constitutes a major impediment to reliable communications in multipath code-division multiple-access (CDMA) channels. In this paper, an iterative receiver structure is proposed for decoding multiuser information data in a convolutionally coded asynchronous multipath DS-CDMA system. The receiver performs two successive soft-output decisions, achieved by a soft-input soft-output (SISO) multiuser detector and a bank of single-user SISO channel decoders, through an iterative process. At each iteration, extrinsic information is extracted from detection and decoding stages and is then used as a priori information in the next iteration, just as in turbo decoding. Given the multipath CDMA channel model, a direct implementation of a sliding-window SISO multiuser detector has a prohibitive computational complexity. A low-complexity SISO multiuser detector is developed based on a novel nonlinear interference suppression technique, which makes use of both soft interference cancellation and instantaneous linear minimum mean-square error filtering. The properties of such a nonlinear interference suppressor are examined, and an efficient recursive implementation is derived. Simulation results demonstrate that the proposed low complexity iterative receiver structure for interference suppression and decoding offers significant performance gain over the traditional noniterative receiver structure. Moreover, at high signal-to-noise ratio, the detrimental effects of MAI and ISI in the channel can almost be completely overcome by iterative processing, and single-user performance can be approached  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号