首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
比较了4种涡模型的诱导速度分布特征,包括两种层流涡模型和两种湍流涡模型。分别将4种涡模型应用至自由涡尾迹方法的尾涡诱导速度计算中,分析涡模型对风力机低速轴扭矩和尾流的影响。研究表明,在大风速下,湍流涡模型更能真实地反映流动状态;各个模型均能较好地捕捉流场结构和叶尖涡,层流涡模型的尾流涡量更集中,但耗散更快,湍流涡模型的涡量分布均匀,且耗散慢;涡模型对风力机近尾迹区域的尾流风速影响,比对远尾迹区域尾流风速的影响大。  相似文献   

2.
水平轴风力机近尾迹流场结构的实验研究   总被引:1,自引:0,他引:1  
在风洞开口实验段,应用PIV锁相周期采样技术测试风力机近尾迹速度场,通过分析速度场和涡量场,得到近尾迹流场结构特征。近尾迹中存在具有形态特征强烈的叶尖涡结构向下游不断传播。由风轮旋转轴向外,近尾迹的结构组成依次为中央尾迹区、叶尖涡诱导效应区和外部主流区。在叶尖涡诱导效应区内,涡流诱导效应使流场中存在明显的速度增益区和速度亏损区,且增益区和亏损区关于叶尖涡核中心对称。在研究区域内,叶尖涡向下游运动的轴向位移与尖速比成反比,径向位移与尖速比成正比,使叶尖涡诱导效应区影响范围随尖速比的增加径向扩展、轴向缩小。  相似文献   

3.
文章研究了偏航条件下风力机的出力及气动噪声,对固定偏航下的风力机进行了非定常数值模拟。研究结果表明:偏航角每增加10°,升力系数平均值分别降低2.0%,5.7%,10.6%,输出功率分别下降为3.90%,11.11%,19.77%;随着偏航角的增加,中心涡扩散区域增大,涡量强度增强,声压级也相对较强;中心涡对尾迹声辐射的影响长度较长,叶尖涡影响长度较短。  相似文献   

4.
文章利用ANSYS Workbench中的Fluid Flow(CFX)与Transient Structural平台对实木和环氧树脂材料叶片进行双向流固耦合数值模拟,分析了流固耦合作用下风力机叶片的变形情况和叶片变形对风力机尾迹流场和输出功率的影响。分析结果表明:在额定风速下,叶尖位置变形最大,实木材料叶片的最大变形量为18.72mm,远大于环氧树脂材料叶片的最大变形量(4.88 mm),随着风速的增大实木材料叶片变形更明显;实木材料叶片风力机的尾迹叶尖涡涡量较大,尾迹速度扰动更加强烈,速度亏损也较多,风轮输出功率较大。  相似文献   

5.
王天凡  施鎏鎏 《动力工程学报》2021,41(10):877-882,891
为研究剪切指数对风力机尾迹流动特性的影响,以NREL Phase Ⅵ型风力机为研究对象,采用SST k-ω湍流模型,在不同剪切指数下对风力机尾迹流场进行定常数值模拟.考察了不同来流剪切工况下,风力机尾迹流场中漩涡结构变化对速度和湍动能等流动参数的影响.结果 表明:在剪切来流工况下尾迹流场呈现非对称性,尾迹流场向远离壁面的方向偏斜;随着剪切指数的增大,轮毂上方的中心涡强度增大,下方中心涡强度减弱;下方流体被大量卷吸进上方剪切层,形成高速条带;中心涡的不对称性造成尾迹流场湍动能增强,尾迹流场恢复减慢.  相似文献   

6.
利用线式互相关PIV系统,采用轴编码器定位周期采样技术,在不同尖速比下对旋转水平轴风力机风轮不同子午面下游流场结构进行测量.分析得到不同条件下的瞬时图、时均图,重点对叶尖涡诱导效应区进行研究.实验结果表明:在风轮下游尾迹中可清晰看到叶轮近尾迹流场中的外部主流区、叶尖涡诱导效应区和中心尾迹区.其中风轮下游尾迹流管廓线是锥形螺旋体;叶尖涡核直径随轴向距离的增加而增大,随着测试方位角的增加,尾迹中各叶片产生的叶尖涡沿螺旋锥形廓线有序地向下游扩散流动;随着尖速比的增加,内部中心尾迹区轴向速度亏损值逐渐增加,并且中心尾迹区的范围逐渐扩大.  相似文献   

7.
韩玉霞  汪建文  李鑫  孙博  刘珍 《太阳能学报》2019,40(4):1179-1184
为研究湍流强度对风力机尾迹涡结构的影响规律,利用TR-PIV(time resolved-particle image velocimetry)对水平轴风力机模型在有、无格栅4.5D(D为风轮直径)范围内的尾流信息进行采集。通过定性及定量分析对比有、无格栅时尾迹流场瞬时涡量、平均涡量及湍动能的变化规律,再现了不同入流条件下尾迹涡形成、发展和湮灭的过程及尾迹涡系间能量传递特性。分析发现:自由流4.5D范围内均可见明显叶尖涡拟序结构,其衰减速度较慢。格栅入流时随湍流强度增加流层间的强剪切及径向掺混作用增强,使叶尖涡拟序结构失稳,2.5D时拟序结构消失;涡量集中区域较自由流明显扩张,叶尖涡诱导效应影响范围增加;尾迹涡系的湍动能较自由流明显增加,随着尾迹向下游发展叶尖涡、中心涡湍动能很快衰减,附着涡区湍动能却明显增强;附着涡区不再是隔离带,而是叶尖涡和中心涡的能量输送带,从而促进尾迹恢复。  相似文献   

8.
在采用LES计算流场的基础上,提高时间分辨率,利用K-FWH方程所定义的声源积分面形成声波辐射特征,采集设计来流风速最佳攻角状态下叶轮尾迹流场的声场数据。重点研究风轮叶尖尾迹区域高幅值的频率噪声及其谐波分布和传播以及不同区域噪声相互影响的声辐射特征。计算结果表明:风轮在旋转过程中,叶轮基频声压能量在叶轮尾迹声辐射中占主导地位,而且由叶尖涡引起的涡流声辐射也较重要,基频谐波的能量耗散相对较慢,致使频谱图中峰值部位较多,但随着频率的不断增加,基频谐波的能量耗散速率也在加快。叶尖涡的运动轨迹,随着监测点远离旋转中心沿X轴正向距离的增大,具有叶尖涡影响的声压值变化特征的监测点沿径向外移并近似于线性关系。  相似文献   

9.
利用线式互相关粒子图像测速(PIV)系统和轴编码器锁相技术,测量了不同尖速比下旋转水平轴风力机叶尖处的流场,获得了风轮叶尖处的瞬时速度场,并通过Tecplot软件处理得到了相应的时均速度场、速度云图及流线图.对瞬时图分析可知:在同一尖速比下,叶尖涡的出现使速度亏损值增加,风轮功率下降;在高尖速比下,流场中叶尖涡出现频率较高,有明显的旋涡结构出现,但随着尖速比的减小,叶尖涡出现的频率降低,只有形成的趋势,在尖速比λ-4的工况下,没有完整的涡出现.通过分析时均图表明:随着尖速比的增加,上游空气通过叶尖后的动能损失增大,叶尖尾迹区内的速度亏损范围增大.  相似文献   

10.
为研究湍流强度对风力机尾流速度恢复的影响,采用高频PIV对均匀来流和格栅入流时风力机下游尾流数据进行采集。通过对比轴向速度、径向速度及雷诺剪切应力发现:均匀来流时轴向速度分层现象明显;叶尖涡将主流卷吸进入尾流区,但无法穿透附着涡区,附着涡相当于一个隔离带;雷诺剪切应力集中在叶尖涡和中心涡区,附着涡区基本为零。格栅入流时下游2.5倍风轮直径处尾流与主流基本融合,主流径向掺混从叶尖涡穿过附着涡渗透到中心涡区;剪切应力在中心涡和叶尖涡区明显增大,附着涡区存在正的峰值,且附着涡区成为叶尖涡和中心涡区的一个动量输送带。相关结论可为风电场优化布局提供指导,有助于揭示湍流强度影响风力机出力和速度亏损的原因。  相似文献   

11.
针对偏航工况下风力机叶片与流场之间的相互作用而产生的变形影响叶片绕流流场问题,基于叶片变形对不同偏航工况下水平轴风力机叶片绕流流场进行双向流固耦合数值计算,分析偏航工况对风力机叶片变形和表面应力的影响,在此基础上研究不同偏航工况对叶片绕流流场的影响.结果表明,不同叶片上的变形和应力呈现不均匀性,且随偏航角增大,不均匀性...  相似文献   

12.
为降低水平轴风力机叶片的气动噪声,受鸮类静音飞行能力的启发,提取鸮类翅膀羽毛的非对称锯齿结构,并重构于风力机叶片尾缘处。采用大涡模拟(LES)和FW-H方程对改型叶片和原型叶片的流场及声场特性分别进行研究。同时通过改变非对称锯齿尾缘的结构参数,以探究不同锯齿夹角、锯齿宽度和锯齿间距对非对称锯齿尾缘的降噪效果的影响。结果显示:非对称锯齿尾缘具有较好的降噪效果,尤其是在低频和中频区域,总声压级最多可降低10 dB。当锯齿夹角分别为30°、40°和50°时,随着锯齿夹角的增加,噪声声压级在多数方位角下呈增加的趋势;锯齿宽度分别为10、12.5和15 mm时,随着锯齿宽度的增加,噪声声压级在多数方位角下明显降低;锯齿间距的改变,对0°方位角下的噪声声压级影响显著。而从涡分布图中可发现,非对称锯齿尾缘未改变叶片表面涡脱落的位置,但会减小涡结构和涡强度,增大涡间距,从而抑制噪声的产生。  相似文献   

13.
针对5 mm大尺度蚊虫尸体在叶片上的附积问题,采用带转捩的k-ω SST湍流模型,以NERL Phase VI风力机为研究对象,从不同弦向覆盖位置入手,对大粗糙度下风力机气动性能进行数值模拟。研究结果表明,粗糙度对风力机整体做功具有较大影响,粗糙度越大效率降低越显著;粗糙度使在叶片靠近叶尖位置的吸力面促成小型低压涡,转捩提前;该效应在大尺度粗糙条件下表现明显,附着涡强度也更大;在叶片压力面添加75%c粗糙度会使翼型产生的气动损失最大。  相似文献   

14.
通过实验测试,以动态旋转平台模拟风力机风向变化及偏航对风,研究不同偏航速度及偏航延时时间对风力机叶片应力及功率的影响。结果表明:动态偏航对风过程中,应力值基本呈由前缘向后缘、叶根向叶尖递减的趋势,在叶展方向0.67R及0.75R处,叶根弦向方向0.25c及0.50c处出现应力集中现象,偏航延时时间的加入可有效抑制叶片应力波动,过慢的偏航速度会导致功率曲线出现较大波动。引入一无量纲系数,该系数为风力机功率及叶片应力的比值,通过分析得知在仅考虑风力机叶片应力及功率时,风力机最佳偏航速度为0.5°/s。  相似文献   

15.
The performance characteristics and the near wake of a model wind turbine were investigated experimentally. The model tested is a three‐bladed horizontal axis type wind turbine with an upstream rotor of 0.90 m diameter. The performance measurements were conducted at various yaw angles, a freestream speed of about 10 m s ?1, and the tip speed ratio was varied from 0.5 to 12. The time‐averaged streamwise velocity field in the near wake of the turbine was measured at different tip speed ratios and downstream locations. As expected, it was found that power and thrust coefficients decrease with increasing yaw angle. The power loss is about 3% when the yaw angle is less than 10° and increases to more than 30% when the yaw angle is greater than 30°. The velocity distribution in the near wake was found to be strongly influenced by the tip speed ratio and the yaw angle. At the optimum tip speed ratio, the axial velocity was almost uniform within the midsection of the rotor wake, whereas two strong peaks are observed for high tip speed ratios when the yaw angle is 0°. As the yaw angle increases, the wake width was found to be reduced and skewed towards the yawed direction. With increasing downstream distance, the wake velocity field was observed to depend on the tip speed ratio and more pronounced at high tip speed ratio. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Yaw misalignment is currently being treated as one of the most promising methods for optimizing the power of wind farms. Therefore, detailed knowledge of the impact of yaw on the wake development is necessary for a range of operating conditions. This study numerically investigates the wake development behind a single yawed wind turbine operating at different tip‐speed ratios and yaw angles using the actuator‐line method in the spectral‐element code Nek5000. It is shown that depending on the tip‐speed ratio, the blade loading varies along the azimuth, resulting in a wake that is asymmetric in both the horizontal and vertical directions. Large tip‐speed ratios as well as large yaw angles are shown to decrease the vertical asymmetry of the yaw‐induced counter‐rotating vortex pair. Both parameters have the effect that they increase the spanwise force induced by yaw relative to the wake rotation. However, while the strength of the counter‐rotating vortex pair in the far wake increases with yaw angle, it is shown to decrease with the tip‐speed ratio. The vertical shift in the wake center is found to be highly dependent on the yaw angle and the tip‐speed ratio. These detailed insights into the yawed wake are important when optimizing potential downstream turbines.  相似文献   

17.
An experimental study is conducted to investigate the flow dynamics within the near‐wake region of a horizontal axis wind turbine using particle image velocimetry (PIV). Measurements were performed in the horizontal plane in a row of four radially distributed measurement windows (tiles), which are then patched together to obtain larger measurement field. The mean and turbulent components of the flow field were measured at various blade phase angles. The mean velocity and turbulence characteristics show high dependency on the blade phase angle in the near‐wake region closer to the blade tip and become phase independent further downstream at a distance of about one rotor diameter. In the near‐wake region, both the mean and turbulent characteristics show a systemic variation with the phase angle in the blade tip region, where the highest levels of turbulence are observed. The streamlines of the instantaneous velocity field at a given phase allowed to track a tip vortex which showed wandering trend. The tip vortices are mostly formed at r/R > 1, which indicates the wake expansion. Results also show the gradual movement of the vortex region in the axial direction, which can be attributed to the dynamics of the helical tip vortices which after being generated from the tip, rotate with respect to the blade and move in the axial direction because of the axial momentum of the flow. The axial velocity deficit was compared with other laboratory and field measurements. The comparison shows qualitative similarity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
于永迪  陈榴  郑哲辉  戴韧 《太阳能学报》2022,43(10):210-217
在雷诺数Re=1.38×105时,采用实验测量对比研究NACA0018原始翼型以及带有格尼襟翼和齿形襟翼翼型的尾迹涡结构,对比锯齿襟翼与格尼襟翼的控制机理。结果表明,在小攻角下,锯齿襟翼较格尼襟翼大大降低尾迹速度亏损,但速度偏转小于格尼襟翼。通过Liutex分析发现气流经过锯齿襟翼后产生了对涡结构,与襟翼固有的流向涡掺混耗散,削弱由于流向涡引起的尾流不稳定性,从而减小翼型的阻力。对比齿形结构不同位置处的流动表明,在尾缘附近,速度偏转角从齿根,齿中到齿尖依次增加,对于远场的尾迹,3个截面的流动一致。  相似文献   

19.
A large eddy simulation was performed on an National Renewable Energy Laboratory (NREL) phase VI wind turbine (10 m diameter), using the exact blade geometry, to determine the influence of different inflow conditions on the aerodynamic loadings and the near wake characteristics. The effects of the three inflow conditions, uniform inflow, linear wind shear and linear wind shear with turbulence, are investigated. Wind shear causes periodic variations in power and aerodynamic loading with an additional force component exerted along the lateral direction. Significant separation occurs in the high wind region on the suction side of the blades, resulting in unstable loading in off‐design inflow conditions. Because of the shear effect between the near‐blade tip vortex and ambient flow, the strong vortex core in the helical structure dissipates and transforms into a continuous vorticity sheet when x/D > 1.5. The combination of inflow turbulence and wind shear enhances the turbulence generation mechanism in the near wake, where energy is withdrawn from large wake structures and converted into energy of small‐scale structures. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
以Phase Ⅵ风力机叶片为研究对象,以r/R=30%、63%和95%处叶素为参考,建立与7、9、15 m/s试验风速下该风力机叶片附着涡环量沿展向分布相同的叶片模型,分析尾随涡对风力机当地翼型气动性能的影响机理。采用带转捩效应的SST k-ω湍流模型,对所建立的叶片模型和二维S809翼型的气动特性进行研究和对比分析。结果表明:旋转叶片尾随涡对分离现象产生抑制作用且随攻角的增大减弱;尾随涡的影响表现出多重效应,除了减小当地翼型的攻角,还降低其吸力面负压系数和压力面正压系数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号