首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
锂离子电池剩余使用寿命(RUL)预测是锂离子电池研究的一个重要方向,通过对RUL的准确预测,可以降低锂离子电池出现事故的概率。针对锂离子电池RUL的准确预测,该研究提出一种综合残差神经网络(ResNet)和双向长短期记忆网络(Bi-LSTM)的优势,并且加入注意力机制(Attention)的锂离子电池RUL预测模型。首先选取能够表现电池寿命的特征参数作为输入量,利用ResNet提取输入数据的隐含特征信息,然后利用Bi-LSTM对时间序列信息进行预测,并且结合注意力机制对预测结果进行权重分配,得到最终的锂离子电池的RUL预测结果。通过美国马里兰大学(CALCE)提供的开源数据集进行锂离子电池RUL预测试验,并与现有的预测模型进行对比试验,对比模型的预测结果,试验结果表明提出的ResNet-Bi-LSTM-Attention模型能够准确地进行锂离子电池RUL预测,各项误差都比较低,具有较好的精度和准确性。最后使用美国航空航天局(NASA)提供的锂离子电池开源数据集进行泛化性实验,证明了ResNet-Bi-LSTM-Attention模型在不同电池RUL预测中具有良好的准确性,可以被广泛使用。  相似文献   

2.
锂离子电池是重要的储能手段之一,对其剩余使用寿命(RUL)进行预测具有非常重要的实际意义。本工作首先针对传统特征提取方法依赖参数设置且对于不同锂离子电池数据集适应性差的缺陷,将电池数据视作矩阵,并引入奇异值分解(SVD)从测量数据和包含更多退化信息的特征提取对象中提取潜在健康因子(HIs)。其次,潜在HIs的冗余和不足会影响RUL的预测,同时考虑到主成分分析(PCA)的缺点,使用Spearman相关分析和堆叠自编码器(SAE)处理HIs得到一个融合HI。在此基础上,利用高斯过程回归(GPR)算法构建了融合HI与容量之间的模型,得到了带有不确定性表达的最终预测结果。最后,通过NASA提供的四个老化电池数据验证了所提预测模型的可行性和有效性。并额外选取MIT电池数据集验证特征提取方法的适应性。实验结果表明,所提出的RUL预测框架具有较好的预测性能,SVD特征提取方法在避免参数设置的前提下具有较好的适应性。本工作提取的HI与经过PCA融合的HI、其他HI相比,预测精度有显著提高。  相似文献   

3.
锂离子电池作为各类储能系统与设备的重要组成部分,准确预测锂离子电池的剩余使用寿命对于保障电池相关产业和设施的可靠性与安全性起着关键作用。针对锂离子电池剩余寿命预测中存在的非平稳、非线性特性导致单一数据驱动方法的预测精度低、泛化性能差等问题,提出了一种基于变分滤波、数据规整和深度融合网络的数据驱动融合(VF-DW-DFN)方法。首先,利用变分滤波法去除原始电池退化序列中的随机噪声干扰,得到相对平稳的退化特征数据。然后,采用最优嵌入法构造预测滑窗,实现特征数据规整,减少信息损失。其次,设计了一种新型深度融合网络对电池非线性退化数据进行建模,辨识电池数据中的退化模式,实现最终的锂离子电池剩余寿命预测。最后,在钴酸锂锂离子电池数据集上进行了剩余寿命预测实验,实验预测的平均均方根误差为1.41%,平均剩余寿命绝对误差小于2个循环周期。实验结果表明所提出的方法泛化性能好,预测精度高,误差小,能够对锂离子电池的退化过程进行有效建模和准确预测。  相似文献   

4.
使用早期数据准确预测电池剩余使用寿命(RUL)可以加速电池的改进和优化。然而电池退化过程是非线性的,且在早期阶段容量衰减可忽略不计,使得RUL预测具有挑战性。为解决这一问题,本工作使用电池早期循环数据,并构建WOA算法和XGBoost算法的混合预测模型预测RUL。文章首先对电池实验数据进行预处理,观察放电电压-容量退化曲线和容量增量曲线的变化,选取与实际容量状态相关性较高的潜在特征,并将其时间序列数据作为XGBoost预测模型的输入,然后采用WOA算法对模型进行参数优化。最后使用由丰田研究所提供的84个在多步充电和恒流放电条件下的锂离子电池数据进行验证,结果表明所提出模型仅使用前100个周期循环数据即可对整个电池寿命预测,测试误差低于4%。  相似文献   

5.
针对普通的电动机绝缘剩余寿命预测模型收敛速度慢、结果偏差大的缺陷,提出了一种基于粒子群算法(PSO)优化BP神经网络的电动机绝缘剩余寿命预测模型。首先,利用PSO算法全局随机最优解搜索的特性,对传统BP神经网络模型的权值和阈值进行优化设计。其次,为便于预测模型的运算处理,对采集的三相异步电动机的数据进行归一化处理。最后,结合经PSO算法优化的BP神经网络模型对三相异步电动机的绝缘剩余寿命进行试验预测。结果表明,基于PSO优化的BP神经网络比传统BP神经网络有更为精准的预测能力以及更快的收敛速度。  相似文献   

6.
为了建立能够精准描述风机轴承退化过程的退化特征趋势性量化指标,提高风机轴承剩余使用寿命(RUL)的预测精度,提出了一种结合卷积神经网络(CNN)和长短期记忆(LSTM)的神经网络模型(CNN-LSTM),用于风机轴承剩余寿命(RUL)的预测。首先,利用卷积神经网络进行深层特征挖掘,获取具有单调性和时序趋势性的退化特征;然后,将退化特征向量归一化处理后作为LSTM模型的输入,并利用LSTM自适应提取退化特征时序上的内部相关性构建趋势性退化特征指标并得到退化曲线;最后,确定失效阈值,利用最小二乘法拟合退化曲线,预测寿命失效点,实现滚动轴承的RUL预测。  相似文献   

7.
简述了锂离子电池等效电路模型和电化学模型的研究进展。由于具有耗时短、技术开发效率高等优点,仿真模型被广泛应用于锂离子电池衰减机制分析、状态诊断及寿命预测。锂离子电池仿真模型主要包括等效电路模型和电化学机理模型。等效电路模型主要应用于锂离子电池荷电状态诊断。电化学机理模型主要应用于锂离子电池衰减机制分析和健康状态诊断,并为寿命预测提供技术支持。等效电路模型的结构过于单一,在锂离子电池寿命后期适用性降低。电化学机理模型结构复杂,计算量大,在线性应用能力较差。总结了现阶段常用的锂离子电池等效电路模型和电化学模型的建模原理及模型结构,阐述了每种模型在电池研究中的具体应用,并分析了其各自的优势及局限性。通过以上分析,并结合最新的建模理论,对建立具有高精度、高适用性锂离子电池仿真模型的研究方向进行了展望。  相似文献   

8.
近年来,随着锂离子电池的能量密度、功率密度逐渐提升,其安全性能与剩余使用寿命预测变得愈发重要。本综述全面分析了锂电池剩余使用寿命预测领域研究现状,系统介绍了现有预测算法,并着重探讨了机器学习方法在该领域的应用。基于模型的方法包括电化学模型、等效电路模型和经验退化模型;基于数据驱动的方法涵盖了支持向量回归、高斯过程回归、极限学习机、卷积神经网络、循环神经网络和Transformer等常用的机器学习方法。本文详细分析了每种方法的优缺点,并重点阐述了机器学习方法在特征提取与融合方法等方面的应用及发展情况。对于特征提取,本文从电流电压温度曲线、IC曲线、EIS曲线中进行总结分析;对于融合方法,本文将其细分为模型-模型、数据-模型、数据-数据融合方法并进行分析。最后,针对当前研究存在的问题,本综述从早期预测、在线预测和多工况预测3个方面提出了对剩余使用寿命预测方法的研究建议,为提升锂电池剩余使用寿命预测算法的准确性和实用性提供思路。  相似文献   

9.
为了有效地提高锂离子电池寿命评估的准确性,延长储能系统在配电网中运行年限,文章提出了基于加速寿命试验的锂离子电池可靠性分析方法。综合考虑不同放电深度对锂离子电池寿命影响,建立了锂离子电池的寿命衰退模型;确定了荷电状态(SOC)与健康度(SOH)的关联特性关系;提出了基于逆幂率方程的储能系统加速寿命试验方法;基于情景分析法对锂离子电池的可靠性进行了分析。研究结果表明,文章所提出的试验方法能够准确地对不同运行状态下的锂离子电池储能系统进行可靠性评估,保证储能系统并网运行过程中的调控准确性。  相似文献   

10.
由于锂离子电池本身复杂的老化特性,准确预测电池的健康状态和剩余寿命是一个尚未解决的挑战,这限制了消费电子、电动汽车和电网储能等技术的发展.电池的老化机制复杂且相互耦合,难以采用基于模型的方法进行准确的建模.本工作提出了一种基于数据驱动的锂离子电池容量估计方法,通过分析电池的电压-放电容量曲线随循环老化的演变模式,提取具有电化学意义的特征,采用高斯过程回归(Gaussian process regression,GPR)对电池的容量进行预测.该模型的输入特征可以在线获取,不需要对电池进行完整的充放电循环即可估计容量.在钴酸锂电池和磷酸铁锂电池数据集上分别进行了实验验证,结果表明该方法具有较好的泛化能力,对不同类型的电池均能实现准确的容量估计.将本文的方法与阻抗谱作为输入的GPR模型进行对比试验,结果表明该特征能获得更好的估计精度.这一结果说明了合适的特征选择能显著影响锂离子电池的数据驱动模型性能,为电池的状态预测与诊断提供了参考.  相似文献   

11.
Scientific estimation and prediction of the state of health (SOH) of lithium-ion battery, especially the remaining useful life (RUL), has important significance to guarantee the battery safety and reliability in the full life cycle to avoid catastrophic accidents as much as possible. In order to accurately predict the RUL of the lithium-ion battery, this paper firstly analyzes the problems of the standard particle filter (PF). Then, a novel extended Kalman particle filter (EKPF) is proposed, in which the extended Kalman filter (EKF) is used as the sampling density function to optimize PF algorithm. The life cycle tests are designed and carried out to get accurate and reliable data for the RUL prediction. And, the aging properties of lithium-ion battery are analyzed in detail. The RUL prediction is done based on the established capacity degradation model and the proposed EKPF method. Results show that the RUL prediction error of the proposed method is less than 5%, which has higher precision compared with the standard PF method and can be used both offline and online.  相似文献   

12.
The state of health (SOH) is a crucial indicator of lithium-ion batteries. A battery cycle and calendar life are critical for electric vehicle batteries. Complex interactions occur between the SOH and internal resistance of a battery. In this study, several ternary lithium-ion battery charge discharge experiments were performed to investigate the effects of the ambient temperature, discharge rate, and depth of discharge on a battery's internal resistance. An SOH prediction model was then constructed and used to evaluate the remaining capacity of the electric vehicle battery. The model was verified through various experiments, and a comparison of experimental and model-derived data revealed a favorable agreement. Thus, the model accurately predicted the SOH of a ternary lithium-ion battery.  相似文献   

13.
A new method for state of health (SOH) and remaining useful life (RUL) estimations for lithium-ion batteries using Dempster-Shafer theory (DST) and the Bayesian Monte Carlo (BMC) method is proposed. In this work, an empirical model based on the physical degradation behavior of lithium-ion batteries is developed. Model parameters are initialized by combining sets of training data based on DST. BMC is then used to update the model parameters and predict the RUL based on available data through battery capacity monitoring. As more data become available, the accuracy of the model in predicting RUL improves. Two case studies demonstrating this approach are presented.  相似文献   

14.
State-of-health (SOH) plays a vital role in battery health management and power system stability. This process can be achieved by capacity estimation. However, in practice, the capacity of a battery is difficult to obtain online given that it cannot be determined with general sensors. This means that the capacity is only known for the limited cycles of the batteries. To address this issue, we propose a novel semi-supervised learning framework to estimate the capacity of unlabeled data to achieve better SOH prediction. First, four indirect features are extracted from the charging profiles. Then an improved locally linear reconstruction method is used to determine the capacity distributions of the unlabeled data. Combined with the oversampling method applied to generate a series of data by the estimated distributions, a support vector regression model is utilized to predict the RUL of the batteries given the threshold values of the batteries. A case study with two types of cellular phone lithium-ion batteries is presented to illustrate the effectiveness of the proposed method for the prediction of the remaining useful life of different batteries and different starting points. The experimental results prove that the performance of the proposed method is better than the K-nearest neighbor method and locally linear reconstruction method in terms of accuracy and robustness.  相似文献   

15.
针对退役动力电池存在初始特性参数不一致,梯次利用过程中存在安全稳定性降低等问题,提出一种基于风险防御的退役动力电池递进式分选方法。首先,提取电动汽车退役动力电池“灰箱”数据,选取剩余容量、内阻及端电压作为分选参数,采用改进K-均值算法对退役动力电池参数进行初始聚类数据提取。其次,估计梯次利用过程中退役动力电池荷电状态(SOC)、健康状态(SOH)等特性,通过功能状态(SOF)表征参数间的关联特性,并基于SOF动态一致性进行分选。最后,考虑风险防御预留系统的SOF动态安全裕度,降低退役动力电池初始特性缺陷对梯次利用重组的影响。通过仿真分析验证所提分选方法提高了退役动力电池的一致性,并有效降低了重组系统的寿命损耗。  相似文献   

16.
随着大量退役电池梯次利用,对退役动力电池健康状态的准确估计是保障电池梯次利用安全高效运行的前提。针对上述问题,提出基于深度神经网络学习的梯次利用电池健康状态评估方法。根据不同循环次数下梯次利用电池充放电性能的差异性,从梯次利用电池物理特性角度挖掘影响梯次利用电池老化特征的主要参数,利用皮尔逊法计算电池老化特征与梯次利用电池健康状态的相关系数,选取较高相关度特征作为深度神经网络的输入,建立基于深度神经网络学习的梯次利用电池健康状态评估模型。通过美国国家航空航天局Ames卓越预测中心的锂离子电池测试数据仿真实例验证了该文方法的有效性。仿真结果表明,与传统神经网络相比,深度神经网络学习可明显提高梯次利用电池健康状态的预测精度,为退役动力电池健康状态评估提供理论依据。  相似文献   

17.
提出将光伏剩余电量按照可变比例分配给储能电池及市政电网的动态运行策略,建立基于该策略的并网太阳能分布式供能系统设计运行联合优化模型,在不同分时电价下基于遗传算法对模型寻优,并将动态运行策略与对照运行策略(剩余电量优先并网或优先分配储能电池)下的系统运行结果进行比较分析。以陕西某乡村典型民居建筑为例进行分析,结果表明:1)分时电价的峰谷价差较大时,动态运行策略可有效降低太阳能分布式供能系统成本;2)分时电价的峰谷价差对于动态运行策略下储能电池的容量配置具有较大影响:峰谷价差越大,储能电池的配置容量越大;3)光伏度电补贴对3种运行策略下的系统成本影响程度为:动态运行策略>策略B(剩余电量优先分配储能电池)>策略A(剩余电量优先并网)。  相似文献   

18.
The technology deployed for lithium-ion battery state of charge (SOC) estimation is an important part of the design of electric vehicle battery management systems. Accurate SOC estimation can forestall excessive charging and discharging of lithium-ion batteries, thereby improving discharge efficiency and extending cycle life. In this study, the key lithium-ion battery SOC estimation technologies are summarized. First, the research status of lithium-ion battery modeling is introduced. Second, the main technologies and difficulties in model parameter identification for lithium-ion batteries are discussed. Third, the development status and advantages and disadvantages of SOC estimation methods are summarized. Finally, the current research problems and prospects for development trends are summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号