首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
风速具有很强的波动性、随机性和间歇性,大规模的风电并网时给电网的安全性和稳定性带来严峻的挑战。精确的风速预测可以有效地提升电网运行的安全性。为此,基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和GM(2,1)模型,提出一种对风速变化趋势进行预测的组合风速预测模型,并利用小波分解与神经网络方法对模型进行了深度改进,从而得到一种具有良好预测精度的组合预测方法。实际算例结果表明,与简单的GM(2,1)预测方法以及集合经验模态分解和神经网络的组合预测方法相比,该方法显著降低了平均绝对误差与平均绝对百分误差,具有理想的预测结果,具有广阔的实际应用前景。  相似文献   

2.
提出一种基于集合经验模态分解(Ensemble empirical mode decomposition)和改进极限学习机(Improved Extreme Learning Machine,IELM)的新型短期风速组合预测模型。采用集合经验模态分解将风速序列分解成不同频段的分量,以降低序列的非平稳性。使用改进极限学习机对各分量分别建模预测,为避免极限学习机输入维数选取的随意性和分量信息丢失等问题,先对各分量重构相空间,最后将各分量预测结果叠加得到最终预测结果。实例研究表明,所提的组合预测模型具有较高的预测精度。  相似文献   

3.
考虑风力发电具有随机性和不稳定性,为准确预测风速,提出一种基于完备集合经验模态分解和双向门控单元网络相结合的短期风速组合预测方法。首先,采用完备集合经验模态分解,将原始风速序列分解为若干个具有较强规律性的子序列,以减少不同特征尺度序列间的相互影响;然后,利用样本熵来评估风速子序列的复杂度,将复杂度相近的子序列组合为一个新序列,以减少输入到神经网络的模型数量;最后,将新组合的子序列分别输入到双向门控单元网络中进行预测,得到各子序列的预测结果,叠加得最终的风速预测结果。实例预测结果表明,所提出的风速预测方法具有较高的精度和运行效率。  相似文献   

4.
基于经验模式分解和神经网络的短期风速组合预测   总被引:2,自引:0,他引:2       下载免费PDF全文
风速时间序列具有很强的间歇性和随机性,属于非平稳时间序列。为提高预测精度,提出了经验模式分解法(EMD)和神经网络相结合的短期风速组合预测模型。该方法运用EMD将风速序列分解为一系列不同频率的相对平稳的分量,减少了不同特征信息之间的干扰;根据各个分量的变化规律,选择合适的神经网络模型来分别预测,对高频分量采用神经网络组合预测模型,低频分量采用合适的预测模型直接进行预测;将各分量预测值叠加得到最终预测值。算例结果表明,所提方法与单一的径向基神经网络模型(RBF)和支持向量机模型(SVM)相比,预测精度得到了大幅度的提高。  相似文献   

5.
针对风电场风速时序的不可控特性以及短期风速预测精度低的问题,提出基于改进快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)和Elman-Adaboost的组合预测模型。首先,采用加余弦函数改进FEEMD方法将风速数据分解为相对平稳的本征模态函数分量;然后,运用样本熵(sampleentropy,SE)计算分量复杂度并按复杂度对分量进行重构;最后,基于Elman-Adaboost方法的单步直接预测方法来预测重构后分量下一天24 h的风速值,将所有分量的预测叠加得到最终的预测结果。选择预测点时间前24、48和72 h风速数据作为神经网络的输入维数,比较不同维数对预测精度的影响。实验证明,改进FEEMD-SE-Elman-Adaboost组合预测模型可以有效地提高风电场短期预测的精度。  相似文献   

6.
准确的风速预测对风电场实现平稳出力具有重要意义。为提高短期风速预测精度,提出一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、套索算法(Least Absolute Shrinkage and Selection Operator, LASSO)、遗传算法(Genetic Algorithm, GA)、广义回归神经网络(General Regression Neural Network, GRNN)和长短期记忆模型(Long Short-Term Memory,LSTM)的短期风速变权组合预测模型(Variable Weighted Hybrid Model, VWHM)。首先运用集合经验模态分解技术,将原始风速时间序列分解成多个不同的子序列。然后运用套索算法对各个子序列的数据变量进行筛选,提取代表性变量作为预测输入。最后利用GA的全局优化能力,对由GRNN和LSTM构成的组合预测模型的权重系数进行移动样本自适应变权求解,并加权得到最终预测结果。仿真结果表明,所提的变权组合模型比单一模型以及传统组合模型具有更高的预测精度,且在风速预测中具有优越性。  相似文献   

7.
为了提高风电并入电网的安全性,需要对风功率进行提前预测。风速预测是风功率预测的关键,而风速的不稳定性是预测的难点。为了降低风速的不稳定性,提高预测精度,提出经验模式分解法将风速分解并重组成2组不同的序列,对高频分量采用神经网络组合预测,剩余分量采取BP神经网络预测,并对两分量预测结果等权相加得预测结果。针对不同的样本进行建模预测,验证了该方法的适用性。并比较了GRNN、BP、LS-SVM 3种方法不同组合方式的预测精度,证明了在该组合方法中3种方法优势互补。  相似文献   

8.
准确的风速预测对风电扩大并网规模具有积极的推动作用。针对风速的波动性和随机性特征,提出了一种基于EMD、GPR和ISTA的短期风速预测模型。通过EMD对原始风速序列进行分解,利用GPR对分解后的序列子集进行一级预测,同时利用ISTA改进GPR的超参数优化选择过程;并将由此生成的误差序列带入到ISTA优化的GPR中进行二级预测,通过所得误差预测值对原始预测值进行校正并得到最终预测结果。案例分析表明,本文所提出的模型在短期风速预测中具有较高的预测精度。  相似文献   

9.
随着电力行业的不断发展,负荷预测的重要性也不断彰显,作为负荷预测的重要组成部分,短期负荷预测对于电力系统的调度运行、市场交易都有着重要的意义,精确的负荷预测有助于提高发电设备的利用率和经济调度的有效性。由于影响负荷数据的随机因素太多且具有较强非线性的特点,提出一种基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测方法。通过对某市负荷数据进行仿真,将仿真结果与其他传统预测方法结果相对比,最终证明长短期记忆神经网络模型的误差更低,具有较高的预测精度。同时将互补集合经验模态分解下的长短期记忆神经网络方法与其他分解方法下的长短期记忆神经网络模型预测结果进行对比,验证互补集合经验模态分解方法对提升预测精度的有效性。  相似文献   

10.
提出了采用经验模态分解(EMD)、动态神经网络与BP型神经网络相结合的混合模型进行电力系统短期负荷预测的方法。首先运用EMD将非平稳的负荷序列分解,然后根据分解后各分量的特点构造不同的动态神经网络对各分量分别进行预测,最后对各分量预测结果采用BP网络进行重构得到最终预测结果。仿真结果表明基于该方法的电力系统短期负荷预测具有较高的精度。  相似文献   

11.
提出一种集合经验模态分解、随机森林和极端学习机建模的短期风速预测方法。首先,引入集合经验模态分解将原始风速数据分解成代表不同波动特征的分量,剔除不规则的分量;然后,对保留分量逐一建模,构建随机森林特征选择算法,根据重要性来提取模型的特征输入;最后,建立基于特征选择和极端学习机的风速分量预测模型进行预测,综合分量预测结果得出最终预测结果。  相似文献   

12.
刘辉  李岩  曹权 《电气自动化》2021,43(1):45-47,75
短期风速预测对于风电机组一次调频有着重要意义,而风速的随机性和波动性会直接影响到风速预测的精度.针对风速的上述特点提出了一种基于小波分解的神经网络组合风速预测方法.首先通过小波分解将不稳定的风速信号进行分解,从而得到不同频率的分量并进行重构;然后对高频分量分别采用Elman、BP神经网络预测并选取合适的权重比进行加权平...  相似文献   

13.
张娜  王守相  王亚旻 《中国电力》2014,47(5):129-135
在风电预测中,传统的经验模态分解法将风速信号分解为若干具有不同特征尺度的数据分量时,其所得分量可能存在模态混叠现象,影响风速预测的精度。为此,提出一种基于掩模经验模态分解法和遗传神经网络的风速预测组合模型。首先,通过掩膜信号法(masking signal,MS)对经验模态分解法进行改进,将风速信号分解为频率相对固定、更为平稳的分量。之后,利用遗传神经网络算法分别对这些分量进行预测,将各分量预测结果叠加后得到最终风速预测值。通过C++语言编程进行算法实现,采用实际风场数据进行仿真,其结果表明,所提方法计算时间较短,预测精度较高,特别适用于在线超短期(10 min)和短期(1 h)的风速预测,具有实际的工程应用价值。  相似文献   

14.
从分析风速序列的非线性和非平稳性特征出发,将一种基于聚类经验模态分解(EEMD)和最小二乘支持向量机(LSSVM)的组合预测模型引入到风速预测中。首先使用聚类经验模态分解将风速序列分解为一组相对平稳的子序列,以减轻不同趋势信息间的相互影响;然后运用最小二乘支持向量机对各子序列分别建模预测,为降低预测风险,使用自适应扰动粒子群算法(ADPSO)和模型学习效果反馈机制对LSSVM预测模型的输入维数和超参数进行联合优化;最后将各个子序列的预测结果叠加得到预测风速。实例研究表明,本文所提的组合预测模型可以有效挖掘风速序列特性,具有较高的预测精度。  相似文献   

15.
风电功率的准确预测是减少风电接入电网的不良影响的必要前提。然而风电功率序列在时间上和空间上表现出非平稳性使其难以准确预测,因此提出一种基于集合经验模态分解(EEMD)和深浅层学习组合的短期风电功率组合预测方法,其中深度学习使用稀疏自编码器(SAE)而浅层学习则使用BP神经网络,从而建立EEMD-SAE-BP预测模型。该模型先用EEMD将风电功率原始序列分解为一系列按不同时间尺度分布的分量;然后针对分量中的高频分量建立SAE预测模型,对低频分量则用BP网络建立预测模型;最后将各子序列预测结果叠加得到最终的风电功率预测结果。通过比较几种预测模型的结果,本文提出的预测模型能有效地提高预测精度,有较高的实用价值。  相似文献   

16.
风速具有较大的随机波动性,影响了电网的稳定性,风速预测对于风电并网问题至关重要。本研究采用灰色-马尔可夫链(GM-Markov)与最小二乘支持向量机(LSSVM)预测模型分别对风速进行预测,比较了各单一预测模型的精度;在此基础上研究了动态权重组合模型与0-1法组合预测模型。然后以国内某风电场的实测风速数据为例进行分析,结果表明,单一预测方法时好时坏,稳定性较差,组合预测模型总体效果较好,具有较大的实用价值。  相似文献   

17.
针对风力发电的风速时间序列非平稳特性和预测精度不高的问题,提出了一种基于改进集合经验模态分解(modified ensemble empirical mode decomposition,MEEMD)-局部均值分解(local mean decomposition,LMD)-引力搜索算法(gravita-tional ...  相似文献   

18.
基于经验模态分解法的短期负荷分层预测   总被引:1,自引:0,他引:1  
电力系统短期负荷预测是电力系统经济调度中的重要内容.目前短期负荷预测的预测方法大多是从总负荷入手进行分析建模,未能充分关注负荷变化的各个组成成分.本文提出1种短期负荷分层预测法.首先,运用经验模态分解法自适应地将总负荷分解为若干个独立的内在模式;然后,对高频、低频和趋势分量分别采用正常日点对点倍比模型、多元回归模型和GM(1,1)模型进行预测;最后,将3个分量的预测结果叠加作为最终的预测值.实例研究表明,该方法有效地提高了短期负荷预测的准确度.  相似文献   

19.
短期风速概率预测对实现大规模风电并网具有重要意义。当前风速预测方法大多为点预测,无法描述风能的随机性。提出了一种基于集合经验模式分解(EEMD)和遗传-高斯过程回归(GAGPR)的组合概率预测方法,首先对筛选和归一化后的风速时间序列进行集合经验模式分解,然后对各分量分别建立高斯过程回归模型,并引入遗传算法代替共轭梯度法,改进协方差函数的超参数寻优过程。最后叠加子序列预测结果得到风速概率预测结果,并与分位点回归法进行比较。仿真结果表明,该方法能够有效提高概率预测准确度,并为类似工程提供借鉴。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号