首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王春明  朱永利 《电测与仪表》2019,56(15):143-147
针对变压器故障诊断中模型训练时间长,容易过拟合,噪声敏感等问题,本文提出一种深度降噪极限学习机变压器故障诊断方法。将极限学习机与降噪自编码器结合构建降噪自编码极限学习机,并将其堆叠构建深度降噪极限学习机模型进行特征提取,将提取的特征输入常规极限学习机进行分类,整体构成深度降噪极限学习机分类算法。该算法能有效应对电压器油中溶解气体分析数据中的噪声且具有非常快的学习速度。仿真实验结果表明,相比于传统BP神经网络,本文方法有更高的故障诊断正确率和更短的训练时间,是一种有效的变压器故障诊断方法。  相似文献   

2.
传统单一人工智能方法对变压器故障诊断中采用的大量不完备信息不能够有效处理,导致故障诊断准确率不高。为弥补这一不足,在全面分析粒子群算法(particle swarm optimization,PSO)和极限学习机(extreme learning machine,ELM)各自优势的基础上,构建了一种基于粒子群优化极限学习机的变压器故障诊断方法。该方法以DGA作为特征输入,利用粒子群算法对极限学习机的输入层权值和隐含层阈值进行优化,从而提高变压器故障诊断的精度。实例对比分析表明,与BP神经网络和极限学习机方法相比,粒子群极限学习(PSO-ELM)方法有更高的诊断准确率。  相似文献   

3.
基于遗传算法改进极限学习机的变压器故障诊断   总被引:1,自引:0,他引:1  
《高压电器》2015,(8):49-53
针对变压器故障的特征,结合变压器油中气体分析法以及三比值法,提出了基于遗传算法改进极限学习机的故障诊断方法。由于输入层与隐含层的权值和阈值是随机产生,传统的极限学习机可能会使隐含层节点过多,训练过程中容易产生过拟合现象。该方法运用遗传算法对极限学习机的输入层与隐含层的权值与阈值进行优化,从而提高模型的稳定性和预测精度。将诊断结果与传统的基于极限学习机故障诊断进行对比,结果表明,基于遗传算法改进极限学习机变压器故障诊断的精度更高。  相似文献   

4.
钱峰  叶友卫  陈尊杰 《电气开关》2022,(6):48-51+105
为提高变压器故障诊断的准确性,本文采用优化性能更好的人工鱼群算法(Artificial Fish Swarm Algorithm, AFSA)对极限学习机(Extreme Learning Machine, ELM)进行优化,建立基于AFSA-ELM的变压器故障诊断模型。采用实际变压器故障数据进行仿真分析,并与其他模型进行对比,结果表明,只有AFSA-ELM模型诊断结果的正确率能够达到100%,验证了模型的正确性和优越性。  相似文献   

5.
基于邻域粒子群优化神经网络的变压器故障诊断   总被引:1,自引:3,他引:1  
贾嵘  徐其惠  李辉  刘伟 《高压电器》2008,44(1):8-10,19
为了提高变压器故障诊断正判率,提出了一种邻域粒子群算法优化BP神经网络的电力变压器油中气体分析(DGA)方法,即通过相关统计分析和数据的预处理,选择变压器油中典型气体作为神经网络的输入,然后利用训练好的邻域粒子群算法优化后的神经网络进行变压器故障类型诊断。试验结果表明,该类方法具有很好的分类效果,较好地解决了变压器放电和过热共存时故障的难分辨问题,对故障类型的正判率较高。  相似文献   

6.
为提高油浸式电力变压器故障诊断的精度及可靠性,提出了一种基于改进天鹰算法(modified aquila optimizer, MAO)优化核极限学习机(kernel based extreme learning machine, KELM)的油浸式电力变压器故障诊断方法。利用Tent混沌映射、卡方概率密度函数,对原始天鹰优化算法(Aquila Optimizer, AO)进行改进,改进后的算法有效提升了收敛速度与寻优精度。利用MAO算法对核极限学习机模型中的正则化系数和核函数参数进行联合寻优,构建最优故障诊断模型。实验结果显示,MAO-KELM对变压器故障诊断的准确率达到95.8%,比AO、GWO和PSO优化的核极限学习机故障诊断模型分别提升了3.52%、10.07%和11.64%,体现了MAO算法的优越性,同时与传统模型进行比较,证明所提方法的诊断效果具有明显优势。  相似文献   

7.
由于模糊聚类将故障样本等同进行模糊划分,且受初始值影响,故提出将PSO-WFCM算法用于变压器油中溶解气体的故障诊断。该算法选取油中气体作为故障特征量,利用粒子群算法得到最佳初始聚类中心,用以指导模糊聚类求取最终的聚类中心。实验结果表明,其弥补了模糊聚类的不足,还提高了变压器的诊断性能。  相似文献   

8.
由于模糊聚类将故障样本等同进行模糊划分,且受初始值影响,故提出将PSO-WFCM算法用于变压器油中溶解气体的故障诊断。该算法选取油中气体作为故障特征量,利用粒子群算法得到最佳初始聚类中心,用以指导模糊聚类求取最终的聚类中心。实验结果表明,其弥补了模糊聚类的不足,还提高了变压器的诊断性能。  相似文献   

9.
《高压电器》2017,(10):124-130
为有效克服变压器不完备故障样本数据对故障诊断结果的影响,文中构建了一种基于粗糙集的人工鱼群极限学习机变压器故障诊断方法,该方法首先运用粗糙集对决策表中的16个条件属性进行约简;其次,根据最简规则表对训练样本进行编码,利用已编码的训练样本对极限学习机进行训练,并运用人工鱼群优化方法对极限学习机的权值及阈值进行优化;最后,利用训练好的极限学习机方法对编码好的样本进行故障诊断。该方法将粗糙集在不完整数据方面所具有的优良特性与极限学习机优良的泛化能力有机融合,以有效提高故障诊断精度。经实例对比分析表明,所构建方法具有更高的诊断准确率,从而验证了该方法的有效性。  相似文献   

10.
电网故障诊断中交叉数据模式识别问题占据重要位置,传统的人工智能方法处理效果不甚理想。提出运用改进极限学习机进行故障诊断的算法,随机选取输入权值向量和隐含层的偏差,并且利用最小二乘法分析计算输出权值,以达到提高故障诊断容错性的目的。仿真结果表明:在保护动作信息不完备的情况下,该算法的故障判断准确性明显优于BP神经网络,该算法对存在一定错误数据的故障信息也具有良好的识别能力。  相似文献   

11.
基于改进模糊ISODATA算法的变压器故障诊断   总被引:2,自引:0,他引:2  
王子建  何俊佳  尹小根 《高压电器》2006,42(1):11-13,17
模糊ISODATA算法在基于变压器DGA的故障诊断中存在一些问题。如:模式空间的划分缺乏依据,聚类分析时没有考虑各种气体成分对故障反映的灵敏度等。笔者对此进行了改进,引入了一个描述不同气体成分对故障反映灵敏度的指标权向量,并在每次迭代运算之后对聚类中心进行分解和合并处理。利用改进的ISODATA算法对3起变压器故障进行了分析,得到了比较高的判断准确度。  相似文献   

12.
对电力变压器进行高效准确的故障诊断可有效保障电力系统安全、稳定运行。为提高变压器故障诊断正确率,提出了一种基于改进量子粒子群优化模糊聚类的变压器故障诊断方法。采用遗传算法杂交概率的思想改进量子粒子群算法提高算法收敛速度、防止陷入局部极值,克服模糊聚类算法易受初始值影响的不足,进而实现对变压器高效、准确的故障诊断。以变压器油中典型气体作为故障特征量,选取68组数据建立故障集,采用改进量子粒子群算法寻找最佳初始聚类中心,并将其应用于3种不同数据组进行验证,实验结果表明文中所提方法的有效性。  相似文献   

13.
基于贝叶斯网络和DGA的变压器故障诊断   总被引:8,自引:3,他引:8  
用 3步法构造贝叶斯网络 (BN)方法 ,结合油中溶解气体分析 (DGA)的三比值法后 ,引入大型变压器的故障诊断 ,提出了基于BN理论和DGA方法的变压器智能故障诊断模型。 2 2台故障变压器的诊断实例验证此法有效  相似文献   

14.
在对变压器常见故障进行介绍的基础上,针对BP神经网络存在的缺陷,提出了经量子免疫优化的BP神经网络算法,通过与不同算法的对比,验证了该算法的准确性和快速性。  相似文献   

15.
基于油气分析的电力变压器故障诊断   总被引:1,自引:1,他引:0  
提出了基于油气分析的故障诊断模型,并用实例证实了其可行性.  相似文献   

16.
为提高变压器故障诊断的准确率及可靠性,提出了基于MPC(modification of the PC,简称MPC)算法优化贝叶斯网络的变压器故障诊断方法,对变压器故障诊断技术进行了研究。首先,根据油中溶解气体分析,采用无编码比值法提取油浸式变压器的9维故障特征,并对数据样本进行归一化处理;其次,以归一化的训练样本作为输入建立基于贝叶斯网络的故障诊断模型,采用MPC算法对贝叶斯网络模型进行优化;最后,利用测试样本对故障诊断模型进行测试。为了证明所提出方法的优越性,将本文研究方法与现有故障诊断方法进行了对比。结果表明,所提出方法的诊断正确率更高,诊断效果更好。  相似文献   

17.
针对充油变压器绝缘故障诊断的三比值法的局限性,建立以变压器油中溶解气体含量为样本数据,对不同的隐含层数目进行仿真分析,通过比较确定了适用于变压器绝缘故障诊断的BP神经网络模型。研究表明,这种方法提高了神经网络的收敛速度,符合电力变压器故障诊断系统的实际情况,准确率高。  相似文献   

18.
灰色关联分析已应用于电力变压器故障诊断,传统基于单一故障标准模式向量灰色关联分析算法的油中溶解气体分析(DGA)诊断模型精度有限.为此,提出一种改进型灰色关联算法,该算法在充分考虑DGA数据分散性的基础上,将每类故障的标准故障模式向量由原来算法中的1个扩充到6个,并给出每类故障的DGA数据分布范围,增大诊断信息量;利用关联分析原理,求出待诊模式与各类故障标准模式的灰色关联度,得到故障诊断判定.实例分析证明,所提算法的诊断准确率高于原来的普通灰色关联方法.  相似文献   

19.
1 引言 变压器油是油浸式变压器的主要绝缘,它除了起绝缘和冷却作用外,还是变压器内部缺陷信息的载体,对变压器油中溶解气体的色谱分析可以发现变压器的潜伏性故障.局部过热和局部放电会引起变压器油和固体绝缘的裂解,从而产生气体.  相似文献   

20.
模糊贝叶斯网的变压器故障诊断   总被引:1,自引:0,他引:1  
目前油中溶解气体的三比值法是变压器故障诊断的有效方法之一。变压器故障诊断中的信息具有随机性和不确定性的特点,文中提出一种基于模糊贝叶斯网络的变压器故障诊断方法。该方法利用贝叶斯表达知识灵活,处理不确定性与关联性问题能力强,模糊集能有效表达模糊事件和信息的特点,利用隶属函数模糊化三比值的分割空间,模糊贝叶斯网络推理获得故障类型。实例证明,该方法在信息不完备条件下诊断准确率高,为变压器故障诊断提供了一条新的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号