共查询到20条相似文献,搜索用时 15 毫秒
1.
针对变压器故障诊断中模型训练时间长,容易过拟合,噪声敏感等问题,本文提出一种深度降噪极限学习机变压器故障诊断方法。将极限学习机与降噪自编码器结合构建降噪自编码极限学习机,并将其堆叠构建深度降噪极限学习机模型进行特征提取,将提取的特征输入常规极限学习机进行分类,整体构成深度降噪极限学习机分类算法。该算法能有效应对电压器油中溶解气体分析数据中的噪声且具有非常快的学习速度。仿真实验结果表明,相比于传统BP神经网络,本文方法有更高的故障诊断正确率和更短的训练时间,是一种有效的变压器故障诊断方法。 相似文献
2.
《高压电器》2016,(11)
传统单一人工智能方法对变压器故障诊断中采用的大量不完备信息不能够有效处理,导致故障诊断准确率不高。为弥补这一不足,在全面分析粒子群算法(particle swarm optimization,PSO)和极限学习机(extreme learning machine,ELM)各自优势的基础上,构建了一种基于粒子群优化极限学习机的变压器故障诊断方法。该方法以DGA作为特征输入,利用粒子群算法对极限学习机的输入层权值和隐含层阈值进行优化,从而提高变压器故障诊断的精度。实例对比分析表明,与BP神经网络和极限学习机方法相比,粒子群极限学习(PSO-ELM)方法有更高的诊断准确率。 相似文献
3.
基于遗传算法改进极限学习机的变压器故障诊断 总被引:1,自引:0,他引:1
《高压电器》2015,(8):49-53
针对变压器故障的特征,结合变压器油中气体分析法以及三比值法,提出了基于遗传算法改进极限学习机的故障诊断方法。由于输入层与隐含层的权值和阈值是随机产生,传统的极限学习机可能会使隐含层节点过多,训练过程中容易产生过拟合现象。该方法运用遗传算法对极限学习机的输入层与隐含层的权值与阈值进行优化,从而提高模型的稳定性和预测精度。将诊断结果与传统的基于极限学习机故障诊断进行对比,结果表明,基于遗传算法改进极限学习机变压器故障诊断的精度更高。 相似文献
4.
5.
6.
为提高油浸式电力变压器故障诊断的精度及可靠性,提出了一种基于改进天鹰算法(modified aquila optimizer, MAO)优化核极限学习机(kernel based extreme learning machine, KELM)的油浸式电力变压器故障诊断方法。利用Tent混沌映射、卡方概率密度函数,对原始天鹰优化算法(Aquila Optimizer, AO)进行改进,改进后的算法有效提升了收敛速度与寻优精度。利用MAO算法对核极限学习机模型中的正则化系数和核函数参数进行联合寻优,构建最优故障诊断模型。实验结果显示,MAO-KELM对变压器故障诊断的准确率达到95.8%,比AO、GWO和PSO优化的核极限学习机故障诊断模型分别提升了3.52%、10.07%和11.64%,体现了MAO算法的优越性,同时与传统模型进行比较,证明所提方法的诊断效果具有明显优势。 相似文献
7.
8.
9.
《高压电器》2017,(10):124-130
为有效克服变压器不完备故障样本数据对故障诊断结果的影响,文中构建了一种基于粗糙集的人工鱼群极限学习机变压器故障诊断方法,该方法首先运用粗糙集对决策表中的16个条件属性进行约简;其次,根据最简规则表对训练样本进行编码,利用已编码的训练样本对极限学习机进行训练,并运用人工鱼群优化方法对极限学习机的权值及阈值进行优化;最后,利用训练好的极限学习机方法对编码好的样本进行故障诊断。该方法将粗糙集在不完整数据方面所具有的优良特性与极限学习机优良的泛化能力有机融合,以有效提高故障诊断精度。经实例对比分析表明,所构建方法具有更高的诊断准确率,从而验证了该方法的有效性。 相似文献
10.
11.
12.
对电力变压器进行高效准确的故障诊断可有效保障电力系统安全、稳定运行。为提高变压器故障诊断正确率,提出了一种基于改进量子粒子群优化模糊聚类的变压器故障诊断方法。采用遗传算法杂交概率的思想改进量子粒子群算法提高算法收敛速度、防止陷入局部极值,克服模糊聚类算法易受初始值影响的不足,进而实现对变压器高效、准确的故障诊断。以变压器油中典型气体作为故障特征量,选取68组数据建立故障集,采用改进量子粒子群算法寻找最佳初始聚类中心,并将其应用于3种不同数据组进行验证,实验结果表明文中所提方法的有效性。 相似文献
13.
14.
15.
16.
为提高变压器故障诊断的准确率及可靠性,提出了基于MPC(modification of the PC,简称MPC)算法优化贝叶斯网络的变压器故障诊断方法,对变压器故障诊断技术进行了研究。首先,根据油中溶解气体分析,采用无编码比值法提取油浸式变压器的9维故障特征,并对数据样本进行归一化处理;其次,以归一化的训练样本作为输入建立基于贝叶斯网络的故障诊断模型,采用MPC算法对贝叶斯网络模型进行优化;最后,利用测试样本对故障诊断模型进行测试。为了证明所提出方法的优越性,将本文研究方法与现有故障诊断方法进行了对比。结果表明,所提出方法的诊断正确率更高,诊断效果更好。 相似文献
17.
18.
19.
1 引言 变压器油是油浸式变压器的主要绝缘,它除了起绝缘和冷却作用外,还是变压器内部缺陷信息的载体,对变压器油中溶解气体的色谱分析可以发现变压器的潜伏性故障.局部过热和局部放电会引起变压器油和固体绝缘的裂解,从而产生气体. 相似文献
20.
模糊贝叶斯网的变压器故障诊断 总被引:1,自引:0,他引:1
目前油中溶解气体的三比值法是变压器故障诊断的有效方法之一。变压器故障诊断中的信息具有随机性和不确定性的特点,文中提出一种基于模糊贝叶斯网络的变压器故障诊断方法。该方法利用贝叶斯表达知识灵活,处理不确定性与关联性问题能力强,模糊集能有效表达模糊事件和信息的特点,利用隶属函数模糊化三比值的分割空间,模糊贝叶斯网络推理获得故障类型。实例证明,该方法在信息不完备条件下诊断准确率高,为变压器故障诊断提供了一条新的理论依据。 相似文献