共查询到19条相似文献,搜索用时 31 毫秒
1.
针对风电机组齿轮箱传统故障诊断方法以全局误诊断率最小化为目标,忽略了误分类型之间的差别的问题,提出基于代价敏感最小二乘支持向量机(Cost-sensitive Least Squares Support Vector Machine,CLSSVM)的风电机组齿轮箱故障诊断方法。该方法在最小二乘支持向量机原始最优化问题中二次损失函数中嵌入不同样本的误分类代价,建立以误分类代价最小化为目标的CLSSVM故障诊断模型,并同最小二乘支持向量机和代价敏感支持向量机比较。实验结果表明,该方法能提高误分类代价高的故障类样本的诊断正确率,具有代价敏感性,其训练速度也足以满足风电机组齿轮箱故障诊断实时性的需求。 相似文献
2.
为充分挖掘数据采集与监控(SCADA)数据的隐藏信息,减少特征间的冗余性,提升模型预测和预警的精度,提出一种双重改进的完全噪声辅助聚合经验模态分解(IICEEMDAN)、主成分分析(PCA)、门控循环网络(GRU)融合的风电机组齿轮箱故障预警方法。使用皮尔逊相关系数法作特征提取,采用IICEEMDAN对特征进行分解,得到特征在不同时间尺度上的连续性信号;利用PCA提取分解特征的关键因素作为网络训练输入;GRU网络对输入时间序列特征进行建模训练,实现对齿轮箱油池温度的预测,使用统计学方法分析油池温度预测值与实际值的误差,根据实际情况设定预警阈值;使用滑动窗口理论实现齿轮箱故障预警。采用华北某风场实际数据进行验证,结果验证了所提方法对齿轮箱早期故障预警的有效性。 相似文献
3.
4.
5.
6.
为解决风电齿轮箱状态监测数据样本量较少,特征指标间存在相互干扰且具有非线性难以分类等问题,本文提出了一种基于主成分分析结合支持向量机的风电齿轮箱故障诊断方法。首先,采用主成分分析法(PCA)对原始数据进行降维,做出第1,2主成分二维图及前3个主成分三维图,表明PCA对监测状态数据具有一定的分类效果。其次,提取累计贡献率80%以上的前5个主成分作为数据集。最后,采用支持向量机(SVM)比较4种不同核函数的诊断准确度,并加入噪声验证。分析结果表明:径向基核函数构建的支持向量机总体分类精度达到97%,准确率最高;在含噪的情况下,线性核函数与径向基核函数分类精度达到94%;与MLP神经网络进行对比发现,支持向量机更适应小样本分析且测试精度较高。实例分析表明,主成分分析结合支持向量机有较好的分类效果,适用于风电齿轮箱故障诊断的工程应用。 相似文献
7.
基于粒子群优化BP神经网络的风电机组齿轮箱故障诊断方法 总被引:3,自引:0,他引:3
提出了一种基于粒子群优化BP神经网络风电机组齿轮箱故障诊断方法。粒子群算法不需要计算梯度,可以兼顾全局寻优和局部寻优。利用粒子群算法对BP网络权值和偏置进行优化,减少了BP神经网络算法陷入局部最优解的风险,提高了神经网络的训练效率,加快了网络的收敛速度。考虑风电齿轮箱振动信号的不确定性、非平稳性和复杂性,提取功率谱熵、小波熵、峭度、偏度、关联维数和盒维数作为故障特征。经测试,算法诊断结果正确,表明了PSO优化BP神经网络用于风电机组齿轮箱故障诊断的有效性和实用性。 相似文献
8.
9.
王进花;袁山钦;曹洁 《太阳能学报》2025,(4):550-558
针对深度学习的风电机组齿轮箱诊断方法在噪声环境下的鲁棒性较差且在带标签的样本不足时存在诊断精度较低的问题,提出基于RFECV-GNB风电机组齿轮箱故障诊断方法。该方法结合了交叉验证递归特征消除法(RFECV)在故障数据较少时能有效挖掘故障信号的本质特征,以及高斯朴素贝叶斯(GNB)快速高效的性能进行风电机组齿轮箱的故障诊断。同时,针对RFECV训练时间较长这一问题,提出一种基于CPU并行的任务“打包”算法来提高诊断模型的训练速度。该方法通过超额分配逻辑CPU(LCPU)的方式,实现了LCPU之间工作的有效平衡,以此缩短建模时间。最终,通过多个故障数据集进行实验验证,结果表明在相同故障样本数量下,所提方法与传统方法相比,在诊断精度和建模速度上具有明显优势。 相似文献
10.
为了实现对风电机组齿轮箱的状态监测,文章提出了一种基于卷积神经网络的风电机组齿轮箱状态监测方法。首先,提取风电机组数据采集与监视控制(SCADA)数据和振动信号作为参数,组成齿轮箱状态矩阵。其次,建立了一种卷积神经网络模型,该模型针对输入数据设计了特定结构和池化层规则,提高了计算效率,能够从齿轮箱状态信息中提取特征并判断其状态。最后,利用实际运行的风电机组数据对卷积神经网络模型进行了训练和验证,最终取得了96.3%的识别精度。同时,将该模型应用于对同一风场其他机组的状态监测,结果验证了卷积神经网络模型对齿轮箱状态监测的有效性。 相似文献
11.
针对风力机齿轮箱故障诊断的特征提取过程,提出基于振动信号最优特征提取算法的风力机齿轮箱SVM故障诊断方法。首先,分析3种主要特征提取算法各自适应性高的信号类型;然后,根据不同类型信号所具有的信号特性,利用信号分析对传入的振动信号进行特性提取并分类,将不同类别信号与适应性高的特征提取算法进行匹配,实现振动信号的最优特征提取;最后,将匹配算法与支持向量机模型结合实现故障诊断。对实际采集的3种齿轮故障信号进行测试与验证,结果表明该方法可有效进行最优特征提取与算法匹配,相比未经过匹配算法具有更高的故障诊断准确率。 相似文献
12.
在标准支持向量机(SVM)的基础上,引入主成分分析法(PCA)、粒子群算法(PSO)以及网格算法(GS),构建针对风力机故障的PCA-PSO/GS-SVM组合预测模型。相对于标准SVM,该模型采用PSO以及GS算法寻优参数,能够更准确地建立各变量间的相关关系以提高模型的预测准确性。以中国北方某风场2 MW风电齿轮箱在2017年上半年某2个月的SCADA监测数据为例进行分析。结果表明,对于以齿轮箱输出功率为例的骤变信号的预测,采用PSO算法寻优后的绝对误差均值是采用GS算法的3.0647倍,而对于以高速侧轴端温度为例的缓变信号的预测,则采用PSO算法更加合理;同时发现剔除训练样本数据中的奇异点能够有效提高模型的预测精度及其泛化能力。 相似文献
13.
齿轮箱存在故障时,其振动信号往往表现出非平稳特性,并且故障特征信息往往淹没在强大的背景噪声中,难以实现有效诊断.提出了采用基于EMD方法的特征能量值提取法及支持向量机的智能模式诊断方法,并将二者结合运用于齿轮箱的故障诊断,实现了齿轮箱故障的智能识别与诊断.实验结果证明了EMD方法与支持向量机相结合用于齿轮箱故障诊断的正... 相似文献
14.
机组的振动水平是表征电厂稳定安全最重要的标志之一.本文利用支持向量机的智能方法对机组的轴系故障进行诊断,在小样本集上取得了100%的分类精度.在此基础上,还引入部分噪声数据,统计其分类性能,展示了支持向量机的容错能力.最后分析了支持向量机方法在轴系振动故障振动的优势和缺陷,引入模糊输出支持向量机进行了改进,给设备维修提供了更多的参考信息. 相似文献
15.
基于威布尔分布的风机齿轮箱元件最优更换时间 总被引:2,自引:1,他引:1
刘华鹏 《电网与水力发电进展》2011,27(4):62-65
研究了考虑单位时间系统维护费用最低的风电机组齿轮箱重要组成元件最优更换时间的计算问题。文章对风机齿轮箱的原理和结构进行了简单介绍,并将齿轮箱作为不可修系统对其构成元件的故障率分布进行了分析;建立了风机齿轮箱重要组成元件的最优更换时间计算模型,该模型的原理是对更换成本和故障成本进行平衡,使系统单位时间的维护费用最低;最后,采用文中建立的模型对某地实际风机齿轮箱齿轮、中速轴承和高速轴承的最优更换时间进行求解,结果表明,此方法得到的最优更换方案能够极大地降低风电机组齿轮箱维护费用。 相似文献
16.
17.
18.
19.
针对风力发电机组轴承故障振动信号传递路径复杂多变,且故障信号易受到背景噪声的严重干扰,传统方法对故障特征难以准确提取的问题,提出一种自适应经验小波变换(AEWT)与奇异值分解(SVD)的特征提取方法,并结合核极限学习机(KELM)实现风电机组轴承的故障诊断,该方法同时考虑轴承不同故障类型及不同损伤等级的情况。其中,自适应EWT为两阶段调整过程:基于尺度空间法固有模态函数(IMF)分解-确保EWT分解的有效性、基于相关系数最大的敏感分量提取-实现相关特征最大化和冗余信息的消除。通过相关实验结果可明显发现,所提AEWT的分解效果优于EMD、EEMD、CEEMDAN、LMD等方法。对提取敏感分量利用SVD计算奇异值,构建故障特征向量;最后将特征向量作为KELM的输入,建立KELM轴承状态识别模型。通过西储大学平台轴承振动信号和实际风场采集的轴承振动信号对算法进行验证,结果表明,相比SVM、ELM、KNN等识别模型,该方法能有效识别出不同故障类型及不同损伤等级下的轴承故障,整体识别率达99%。 相似文献