首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 503 毫秒
1.
JS Erulkar  DA O'Brien  JC Saunders 《Canadian Metallurgical Quarterly》1996,10(4):1127-40; discussion 1140-2
Exposure to intense sound produces a well-defined "patch" lesion on the chick basilar papilla in which 30-35% of the short hair cells are lost. The present study compares various aspects of sensory hair bundle morphology on surviving hair cells in the patch lesion with hair bundles from matched locations on nonexposed control papilla immediately after removal from the exposure and 12-days post exposure. The height and thickness of the hairs, the total number of hairs in the bundle, the width of the bundle, and the area and perimeter of the apical surface of the hair cell were quantified from scanning electron microscope photomicrographs. An attempt was also made to determine if there was a consistent microstructure to the pattern of hair cell loss within the lesion area. Similar observations in 12-day recovered ears are also presented. The results indicated that stereocilia height increased and width decreased on surviving hair cells in the exposed ear. The width of the hair bundle, the hair cell surface area, and perimeter also decreased. However, the number of hairs per cell remained unchanged, and there was no evidence of any consistent organization to the hair cell loss within the patch across a number of specimens. These observations indicated that the hair bundles on short hair cells underwent changes as a consequence of intense sound exposure. The results after 12 days of recovery were complicated by developmental changes on the papilla and incomplete maturation of the newly regenerated hair cells. It remains to be seen whether these changes were the result of cell sampling in the sound-damaged ear or were due to true structural alterations within the sensory hairs themselves.  相似文献   

2.
Both sound exposure and gentamicin treatment cause damage to sensory hair cells in the peripheral chick auditory organ, the basilar papilla. This induces a regeneration response which replaces hair cells and restores auditory function. Since functional recovery requires the re-establishment of connections between regenerated hair cells and the central nervous system, we have investigated the effects of sound damage and gentamicin treatment on the neuronal elements within the cochlea. Whole-mount preparations of basilar papillae were labeled with phalloidin to label the actin cytoskeleton and antibodies to neurofilaments, choline acetyltransferase, and synapsin to label neurons; and examined by confocal laser scanning microscopy. When chicks are treated with gentamicin or exposed to acoustic overstimulation, the transverse nerve fibers show no changes from normal cochleae assayed in parallel. Efferent nerve terminals, however, disappear from areas depleted of hair cells following acoustic trauma. In contrast, efferent nerve endings are still present in the areas of hair cell loss following gentamicin treatment, although their morphological appearance is greatly altered. These differences in the response of efferent nerve terminals to sound exposure versus gentamicin treatment may account, at least in part, for the discrepancies reported in the time of recovery of auditory function.  相似文献   

3.
The motile response of the isolated vestibular hair cell induced by a neurotransmitter was studied. After application of both physostigmine and acetylcholine (Ach) as well as glutamic acid, shortening or tilting of the neck of the guinea pig hair cell was observed. These findings suggest that the effect of a neurotransmitter in the neck region as well as the efferent neuron is involved in the motile response. The location of F-action in isolated vestibular hair cells was investigated by using FITC-labeled phalloidin. In freeze-fixed vestibular hair cells, marked labeling was noted in the hair bundle, cuticular plate and throughout the cytoplasm. After application of both physostigmine and Ach, the labeling in the cuticular plate and the cytoplasm became more intense than that in the hair bundle. Alteration of this phalloidin-labeling pattern suggests that actin could play an important role in the self movement of vestibular sensory cells. The shape of the bull frog hair cell also changed after application of Ach. At the same time, spontaneous discharge and the time constant of the posterior semicircular canal nerve activity decreased. These results suggest that an adaptation mechanism induced by change in the cell shape and membrane potential inhibits the activity of the afferent neuron. Furthermore, these active events could be closely related to the active regulation of vestibular hair cell transmission.  相似文献   

4.
Hair cells in the basilar papilla of birds have the capacity to regenerate after injury. Methods commonly used to induce cochlear damage are systemic application of ototoxic substances such as aminoglycoside antibiotics or loud sound. Both methods have disadvantages. The systemic application of antibiotics results in damage restricted to the basal 50% of the papilla and has severe side effects on the kidneys. Loud sound damages only small parts of the papilla and is restricted to the short hair cells. The present study was undertaken to determine the effect of local aminoglycoside application on the physiology and morphology of the avian basilar papilla. Collagen sponges loaded with gentamicin were placed at the round window of the cochlea in adult pigeons. The time course of hearing thresholds was determined from auditory brain stem responses elicited with pure tone bursts within a frequency range of 0.35-5.565 kHz. The condition of the basilar papilla was determined from scanning electron micrographs. Five days after application of the collagen sponges loaded with gentamicin severe hearing loss, except for the lowest frequency tested, was observed. Only at the apical 20% of the basilar papilla hair cells were left intact, all other hair cells were missing or damaged. At all frequencies there was little functional recovery until day 13 after implantation. At frequencies above 1 kHz functional recovery occurred at a rate of up to 4 dB/day until day 21, beyond that day recovery continued at a rate below 1 dB/day until day 48 at the 5.6 kHz. Below 1 kHz recovery occurred up to day 22, the recovery rate was below 2 dB/day. A residual hearing loss of about 15-25 dB remained at all frequencies, except for the lowest frequency tested. At day 20 new hair cells were seen on the basilar papilla. At day 48 the hair cells appeared to have recovered fully, except for the orientation of the hair cell bundles. The advantage of the local application of the aminoglycoside drug over systemic application is that it damages almost all hair cells in the basilar papilla and it has no toxic side effects. The damage is more extensive than with systemic application.  相似文献   

5.
Ionic currents are critical for the functioning of the inner ear auditory sensory epithelium. We set out to identify and molecularly clone the genes encoding the channels responsible for several currents in the chick basilar papilla. Here we describe an inward-rectifying K+ channel, cKir2.3, present in both hair cells and support cells in the apical end of the chick basilar papilla. The biophysical properties of the human ortholog, hKir2.3, are similar to those of an inward-rectifying channel found in the apical end of the chick basilar papilla, suggesting that this channel may contribute to the corresponding current. Additionally, we describe two new members of the Kv6 subfamily of putative regulatory voltage-gated K channels, cKv6.2 and cKv6.3. Both are expressed in hair cells in the apical end of the chick basilar papilla; cKv6.2 is also strongly expressed in support cells and in the brain.  相似文献   

6.
Many studies of the outer hair cells in cochlea have demonstrated active motility. However, very few studies have been done on vestibular hair cells. This study was designed to demonstrate the motile responses of isolated vestibular hair cells of the chick, induced by potassium promoting contraction. Reversible cell shape changes were observed in 4 of 6 type I hair cells and 3 of 5 type II hair cells by applying the contraction solution. The cell shape changes were revealed mainly in the cuticular plate and infracuticular region. It was suggested that contraction in the cuticular plate of the isolated hair cells might be converted into tension which increases the stiffness of the sensory hairs and restricts their motions, based on the results of the present study, and the structure of contractile proteins and hair behaviors reported by previous investigators.  相似文献   

7.
Nitric oxide synthase III (NOS III) was identified in the guinea pig cochlea on an ultrastructural level using a post-embedding immunolabeling procedure. Ultrathin sections of London Resin (LR) White-embedded specimens were incubated with various concentrations of a commercially available antibody to NOS III and the immunoreactivity visualized by a gold-labeled secondary antibody. Analysis of ultrathin sections of the organ of Corti in the second turn of the cochlea showed that NOS III could be localized in the endothelial cells of the blood vessels under the basilar membrane, which was comparable to its location in similar cells types in various biological systems. Besides this, NOS III was also found in the cytoplasm and in the nuclei of inner and outer hair cells. Immunoreactivity was not distributed homogeneously within receptor cells. Numerous gold particles could be identified at the border of the cuticular plates, in the middle parts of the stereocilia and in the cytoplasm. Gold-labeled anti-NOS III antibodies in these sites were seen mostly on the cytoplasmic side of the submembranous cisterns in the vicinity of mitochondria and in the central parts of the hair cells, whereas the cisterns were nearly free from any immunoreactivity. NOS III was also detected in the efferent and afferent nerve endings that were located at the basal and basolateral side of the outer hair cells. Some immunoreactivity was visible in different nerve fibers of the inner and outer spiral tunnels. Besides this, gold-labeled antibodies were also present in the cuticular plate of inner and outer pillar cells, in the cytoskeletal elements located in the apical parts of Deiters cells, forming the lamina reticularis, and in the cytoskeletal-containing region of the cytoplasm of those Deiters cells located at the basal side of the outer hair cells. The role of the NOS III immunoreactivity identified in the organ of Corti was consistent with respect to hair cell and tissue modulation.  相似文献   

8.
The morphology of the basilar papilla of the emu was investigated quantitatively with light and scanning electron microscopical techniques. The emu is a member of the Paleognathae, a group of flightless birds that represent the most primitive living avian species. The comparison of the emu papilla with that of other, more advanced birds provides insights into the evolution of the avian papilla. The morphology of the emu papilla is that of an unspecialised bird, but shows the full range of features previously shown to be typical for the avian basilar papilla. For example, the orientation of the hair cells' sensitive axes varied in characteristic fashion both along and across the papilla. Many of the quantitative details correlate well with the representation of predominantly low frequencies along the papilla. The most distinctive features were an unusually high density of hair cells and an unusual tallness of the hair-cell bodies. This suggests that the evolution of morphologically very short hair cells, which are a hallmark of avian papillae, is a recent development in evolution. The small degree of differentiation in hair-cell size contrasts with the observation that a significant number of hair cells in the emu lack afferent innervation. It is therefore suggested that the development of functionally different hair-cell types in birds preceded the differentiation into morphologically tall and short hair cells.  相似文献   

9.
Explants of basilar papillae from 6-7 days posthatch chicks were cultured in growth medium for a period of 1-8 days. Hair cells were counted following staining of stereocilia bundles with FITC-phalloidin, and the percentage of hair cell survival was determined by comparison to control (i.e. uncultured) specimens. Hair cell integrity was evaluated by scanning electron microscopy. Although previous studies have utilized organotypic culture of the basilar papilla to assess cell proliferation and ototoxicity, viability and integrity of hair cells was documented for periods of up to only 2 3 days. Our results demonstrate substantive auditory hair cell viability for a period of 7 days in vitro. We describe a pattern of natural hair cell loss in organotypic culture that progresses along a proximal-distal, abneural-neural gradient, mimicking the pattern of hair cell loss that occurs following ototoxic insult to the chick basilar papilla in vivo and the pattern we observed during a 48-h period of exposure of basilar papilla explants to an ototoxic dose of neomycin. Our results provide an important quantitative step for the use of organotypic culture of the chick basilar papilla as a purposeful model to investigate the process of hair cell regeneration-repair in the avian auditory system.  相似文献   

10.
Through thin-section and freeze-fracture electron microscopy, we identify structural correlates of an intense vesicular traffic in a narrow band of cytoplasm around the cuticular plate of the bullfrog vestibular hair cells. Myriads of coated and uncoated vesicles associated with longitudinally oriented microtubules populate the narrow cytoplasmic region between the cuticular plate and the actin network of the apical junctional belt. If microtubules in the sensory hair cells, like those in axons, are pathways for organelle transport, then the characteristic distribution of microtubules around the cuticular plate represents transport pathways across the apical region of the hair cells. This compartmentalized membrane traffic system appears to support an intense vesicular release and uptake along a band of apical plasma membrane near the cell border. Functions of this transport system may include membrane recycling as well as exocytotic and endocytotic exchange between the hair cell cytoplasm and the endolymphatic compartment.  相似文献   

11.
Male Bengalese finches do not normally change their vocal patterns in adulthood; song is stereotyped and stable over time. Adult song maintenance requires auditory feedback. If adults are deafened, song will degrade within 1 week. We tested whether feedback of all sound frequencies is required for song maintenance. The avian basilar papilla is tonotopically organized; hair cells in the basal region encode high frequencies, and low frequencies are encoded in progressively apical regions. We restricted the spectral range of feedback available to a bird by killing either auditory hair cells encoding higher frequencies or those encoding both high and low frequencies and documented resultant changes in song. Birds were treated with either Amikacin alone to kill high-frequency hair cells or Amikacin and sound exposure to target hair cells across the entire papilla. During treatment, song was recorded from all birds weekly. After treatment and song recording, evoked-potential audiograms were evaluated on each bird, and papillas were evaluated by scanning electron microscopy. Results showed that hair cell damage over 46-63% of the basal papilla and the corresponding high-frequency hearing loss had no effect on song structure. In birds with hair cell damage extending further into the apical region of the papilla and corresponding low-frequency and high-frequency hearing loss, song degradation occurred within 1 week of beginning treatment and was comparable with degradation after surgical deafening. We conclude that either low-frequency spectral cues or temporal cues via feedback of the song amplitude envelope are sufficient for song maintenance in adult Bengalese finches.  相似文献   

12.
Laser scanning confocal microscope (LSCM) enables one to observe both the surface structure and the inner configuration in the same specimen, by its possibility of direct, non-invasive serial optical sectioning of whole mounted specimens. The potential value of LSCM in the field of inner ear morphological study was evaluated. The configuration of upper parts of organ of Corti was observed with the LSCM combined with double-stained fluorescence immunohistochemistry technique. The actin filament of hair cells by phalloidin, and the cytokeratin of supporting cells by monoclonal pan-anticytokeratin antibody. The stereocilia, cuticular plate, and the cuticle-free area of hair cells were well demonstrated. In the same specimen, the head plate of outer pillar cell, the phalangeal apical plate and the phalangeal process of Deiter cells were clearly showed as well. LSCM provide a new tool to the morphological study of organ of Corti.  相似文献   

13.
Rapid transmitter release at synapses depends on the close proximity of voltage-gated calcium channels (VGCCs). In mechanosensory hair cells of the vertebrate inner ear, dihydropyridine-sensitive VGCCs may be preferentially expressed at release sites to support transmitter release. In support of this hypothesis we have found that whole-cell current through VGCCs covaried with afferent innervation density among hair cells of the chick's basilar papilla (the avian analog of the mammalian Organ of Corti). The size as well as number of presynaptic dense bodies (PDBs) around which transmitter vesicles cluster varied systematically among equivalent populations of hair cells examined with electron microscopy. The total number of VGCCs was correlated with total release area (PDB cross-sectional area x the number of PDBs) among neurally located (tall) hair cells. Abneural, short hair cells with little or no afferent contact expressed a low number of VGCCs independent of release area. The implication is that hair cells augment calcium channel expression by adding release sites and by making release sites larger. This suggests further that aspects of hair cell excitability, such as electrical tuning, could depend on the synaptic architecture of each cell.  相似文献   

14.
The symmetry of chick cochlear hair bundle motion was examined in this study. Isolated segments from the basilar papilla were incubated in vitro in either normal or low calcium medium, which is known to disrupt tip links. Stereociliary bundles, stimulated with an oscillating water microjet, were oriented in profile and viewed in slow motion at high magnification with stroboscopic illumination. The displacement of the tallest hair in the bundle was fixed to 20 degrees peak-to-peak (P-P) motion. The angular deflections of the shortest and tallest hairs were then measured in both the positive (towards the tallest hair) and negative (towards the shortest) directions with respect to the non-stimulated position of the hair. The tallest hairs exhibited nearly symmetric motion in medium containing normal and low calcium. The shortest hairs, in normal calcium, displayed considerable asymmetry with angular deflections in the positive direction significantly larger than in the negative direction. This asymmetric motion disappeared after incubation in low calcium. The shortest hair angular displacement in the negative direction, however, was the same in both normal and low calcium conditions. These results indicated that the tallest and shortest hairs moved with equal angular deflection in the negative direction, while in the positive direction the shortest hair moved through a significantly greater angular deflection than the tallest hair. The implication of this finding is that the tip links contributed significantly to hair bundle motion in the positive direction only.  相似文献   

15.
Dermal papilla cells of rat vibrissa follicles cultivated in monolayers and in three-dimensional collagen gels show a different morphology in these culture systems. Dermal papilla cells cultured in lattices tend to express morphological features resembling those seen in vivo. Quantification of total collagen by incorporation of 3H-proline in monolayer cultures and in collagen lattices show that the amount of collagen found in dermal papilla cells is higher than that secreted. Moreover, collagen synthesis measured in lattices is reduced to about 50% of that found in monolayer cultures. The influence of growth factors on collagen synthesis by hair dermal papilla cells was investigated. We studied the effects of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and minoxidil on collagen synthesis in monolayers and in lattices. VEGF, bFGF and minoxidil significantly decreased the total amount of collagen. In monolayer cultures, there was approximately a 30% inhibition of collagen production with 5 ng/ml bFGF, 0.1 ng/ml VEGF and 100 ng/ml minoxidil. However, in the lattices this inhibition was reduced to about half. These results suggest that both culture substrate and growth factors influence collagen production by rat hair dermal papilla cells.  相似文献   

16.
Striated organelles have consistently been observed in electron micrographs of serial sections from the inner hair cells of normal chinchilla cochleas. The striated organelle is located in the infracuticular plate region. It lines the cuticular plate, and the direction, pattern and periodicity of the striations vary along its length. The striated organelle is seen in close association with the cell membrane, smooth endoplasmic reticulum, microtubules and mitochondria. The striated organelle may play an active role in inner hair cell function, and its proliferation under pathological conditions, as observed by others, may be accompanied by alterations in sensitivity of the inner hair cell to stimuli.  相似文献   

17.
Waves occurring in cold-rolled plates or sheets can be divided into longitudinal and transverse waves. Classical leveling theories merely solve the problem of longitudinal waves, while no well accepted method can be employed for transverse waves. In order to investigate the essential deformation law of leveling for plates with transverse waves, a 2.5-dimensional(2.5-D) analytical approach was proposed. In this model, the plate was transversely divided into some strips with equal width; the strips are considered to be in the state of plane strain and each group of adjacent strips are assumed to be deformation compatible under stress. After calculation, the bending deformation of each strip and the leveling effect of overall plate were obtained by comprehensive consideration of various strips along with the width. Bending of roller is a main approach to eliminate the transverse waves, which is widely accepted by the industry, but the essential effect of bending of roller on the deformation of plates and the calculation of bending of roller are unknown. According to the 2.5-D analytical model, it can be found that, for plates, it is neutral plane offsetting and middle plane elongation or contraction under inner stress that can effectively improve plate shape. Taking double side waves as an example, the appropriate values of bending of roller were obtained by the 2.5-D analytical model related to different initial unevenness, which was applicable to the current on-line adjusting of bending of roller in rolling industry.  相似文献   

18.
A submerged vane is a flow-training facility mounted vertically on the channel bed to control the sediment movement in the channel cross section, and has been utilized in various applications, such as prevention of bank erosion, sediment exclusion at water intakes, and deepening channels for navigation. The performance of a submerged vane is related to its dimensions and shape. This study aims to investigate a vane’s sediment control effectiveness as a function of its size and shape, with the expectation of an optimal combination of dimensions and shape. A model for the calculation of the transverse bed profile in a cross section of a straight alluvial channel induced by a single submerged vane is developed. The model is utilized to investigate the performances for three types of vanes: (1) rectangular plates with various height and length; (2) tapered plates with linear decreasing in length from the base to the top; and (3) plates of parallelogram with the top of the plates swept forward or backward. Design guidelines and suggestions on the dimensions and shape of the vane are provided based on the results.  相似文献   

19.
The present paper provides a brief review on topical issues of auditory physiology. Recent data on transduction mechanism and adaptation in hair cells as well as on the possible role of outer hair cells in amplifying basilar membrane motion are presented. Strategies of present physiological research in dealing with sensorineural deafness are discussed.  相似文献   

20.
It is believed that the sound-induced travelling wave in the mammalian cochlea is enhanced and sharpened by a positive feedback mechanism. This causes the passive linear basilar membrane growth function to become non-linear. The present paper shows that nonlinear basilar membrane vibration is due to the nonlinear growth function of the receptor potential of outer hair cells, which can be described by a 2nd-order Boltzmann function. Since intensity coding in the inner ear depends on an interaction of nonlinear basilar membrane motion and nerve fibers with three different types of synaptic threshold and growth function, the process is directly dependent on an intact mechanoelectrical transduction of outer hair cells. According to the proposed model, a loss in efficiency of outer hair cell mechanoelectrical transduction must lead to both a reduction in gain (i.e., hearing loss) and a linearizing of the response. As a result, once above threshold, the changes of stereociliary displacement, basilar membrane displacement and neural firing rate per unit change of sound intensity must be larger than for the healthy cochlea with its compressive nonlinearity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号