首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipid transfer protein (PLTP) was purified from lipoprotein-free human plasma, obtained upon treatment of plasma with dextran sulfate and Ca2+, by employing a series of column chromatography. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified PLTP showed a single main band, corresponding to the molecular mass of 78 kDa. However, isoelectric focusing of the purified preparation gave multiple bands with pI ranging from 4.3 to 5.1, indicative of microheterogeneity. Purified PLTP was shown to possess not only phospholipid transfer activity, but also high density lipoprotein (HDL) conversion activity (Tu, A.-Y., Nishida, H. I., and Nishida, T. (1990), FASEB J. 4, A2148; Jauhiainen, M., Metso, J., Pahlman, R., Blomqvist, S., van Tol, A., and Ehnholm, C. (1993) J. Biol. Chem. 268, 4032-4036). Isolated HDL3 was enlarged to the size of HDL2b upon incubation with purified PLTP for 6 h at 37 degrees C at the PLTP/HDL3 molar ratio of approximately 1:45. Both the HDL conversion and the phosphatidylcholine transfer activities of purified PLTP were effectively inhibited by rabbit anti-PLTP immunoglobulin G. The primary importance of PLTP in the HDL enlargement that occurs in human plasma upon incubation at 37 degrees C was shown by the strong inhibitory effect of the anti-PLTP immunoglobulin G. The process of PLTP-mediated HDL enlargement was accompanied by the release of apoproteins, primarily apoA-I. HDL3 enlargement mediated by PLTP was effectively inhibited by the addition of free fatty acids.  相似文献   

2.
3.
Mycoplasmas are the smallest free living microorganisms with the smallest genome. The G+C content is in general low (25-33%) and the coding capacity is about 600 proteins. Mycoplasma species are phylogenetically related, they use the genetic codon UGA for tryptophan, and show rapid evolution, with a high rate of divergence. The genomes of Mycoplasma genitalium and Mycoplasma pneumoniae have been fully sequenced. Striking features of the M. genitalium sequencing project are the presence of a high number of membrane proteins with no resemblance to previously sequenced genes and the presence of repeated fragments of the gene encoding the tip-localized 140 kDa adhesin (MgPa). Many Mycoplasma species display a high frequency of antigenic variation, both as phase and size variation of individual antigens. Mycoplasma hominis isolates are known to be antigenic heterogeneous, as reflected in the reactivity with monoclonal antibodies (MAbs). The genetics of the antigenic variation has been studied for three different surface exposed antigens: P120, Lmp, and P50/Vaa. The gene encoding P120 had a hyper-variable region in the N-terminal region. In addition, a second gene with homology to p120 was identified. The gene encoding Lmp, a 135 kDa protein is repeated and both genes are translated and both contain internal repeated sequences. Deletion mutants in the lmp gene were obtained by cultivation of M. hominis PG21 with MAb 552 specific for the repeated part of Lmp. One of the lmp genes had deletions of from four to eight repeats. The other gene was left unaltered. The genes encoding P50/Vaa show a different form of variability where domains of the genes seem to be exchangeable. The genomic maps of five M. hominis strains showed that even though the size of the genomes varied the position of the different genes were in general conserved.  相似文献   

4.
5.
To study the function of plasma phospholipid transfer protein (PLTP) in vivo, a liver directed adenoviral gene transfer system was used to overexpress human PLTP in mice. For the experiments, two strains of mice, wild type (C57/B1) and mice transgenic for the human apoA-I gene (HuApoA-ITg), were utilized. Five days after injection of the recombinant PLTP adenovirus, wild type mice showed a 4-fold increase in serum PLTP activity in (12.2+/-1.3 micromol/ml per h to 48.1+/-8.6 micromol/ml per h (+394%), P < 0.001). The PLTP overexpression induced significant reduction of serum cholesterol (2.46+/-0.08 to 0.69+/-0.42 mmol/l (-72%), P < 0.001), phospholipids (3.10+/-0.06 to 0.90+/-0.24 mmol/l (-71%), P < 0.01), and triglycerides (0.2+/-0.07 to 0.08+/-0.03 mmol/l (-69%), (P < 0.001). ApoA-I was hardly detectable in the serum. These lipid changes were due to a dramatic reduction of high density lipoprotein (HDL). The HuApoA-ITg mice displayed higher basal HDL level and PLTP activity. Adenovirus mediated PLTP overexpression in these mice resulted in a similar decrease of the lipid levels as that seen in the C57/B1 mice. However, the lipoprotein profile revealed a redistribution of HDL, with the appearance of larger buoyant HDL species. The results demonstrate that plasma phospholipid transfer protein in vivo causes high density lipoprotein (HDL) conversion and thereby plays a central role in HDL metabolism.  相似文献   

6.
Sarcomas are a heterogeneous group of malignant tumours, primarily in connective and supportive tissues, that can be difficult to distinguish from other tumour types. Recent knowledge of gene rearrangements resulting from specific translocations in several groups of sarcomas now enables the molecular diagnosis of these subtypes. Increasing knowledge of molecular defects that may be of importance to therapy response and prognosis may in the future become important tools in the clinic, although these tumours are relatively rare, making it difficult to investigate large numbers of comparable groups of patients.  相似文献   

7.
8.
The genes involved in the genesis and progression of adult astrocytic tumors have been an area of considerable investigation. The tumor suppressor gene, p53, has been implicated, as has the epidermal growth factor receptor gene. Additional currently unidentified genes lie on chromosomes 10 and 19. Interestingly, work on pediatric astrocytomas suggests that the genes involved are different. p53 is rarely mutated in pediatric tumors, the epidermal growth factor receptor gene is rarely amplified or mutated, and chromosome 10 deletions are rare. The only pediatric tumor that seems to mimic the findings in adult tumors is brainstem glioma, perhaps explaining the uniformly grim prognosis in this type of tumor. In the pilocytic astrocytoma of childhood, mutations in the neurofibromatosis type I gene have been implicated in tumor development. In this review, the oncogenesis of pediatric gliomas is discussed and compared and contrasted to what is known about tumors.  相似文献   

9.
Colorectal cancer is a significant cause of morbidity and mortality in Western populations. This cancer develops as a result of the pathologic transformation of normal colonic epithelium to an adenomatous polyp and ultimately an invasive cancer. The multistep progression requires years and possibly decades and is accompanied by a number of recently characterized genetic alterations. Mutations in two classes of genes, tumor-suppressor genes and proto-oncogenes, are thought to impart a proliferative advantage to cells and contribute to development of the malignant phenotype. Inactivating mutations of both copies (alleles) of the adenomatous polyposis coli (APC) gene--a tumor-suppressor gene on chromosome 5q--mark one of the earliest events in colorectal carcinogenesis. Germline mutation of the APC gene and subsequent somatic mutation of the second APC allele cause the inherited familial adenomatous polyposis syndrome. This syndrome is characterized by the presence of hundreds to thousands of colonic adenomatous polyps. If these polyps are left untreated, colorectal cancer develops. Mutation leading to dysregulation of the K-ras protooncogene is also thought to be an early event in colon cancer formation. Conversely, loss of heterozygosity on the long arm of chromosome 18 (18q) occurs later in the sequence of development from adenoma to carcinoma, and this mutation may predict poor prognosis. Loss of the 18q region is thought to contribute to inactivation of the DCC tumor-suppressor gene. More recent evidence suggests that other tumor-suppressor genes--DPC4 and MADR2 of the transforming growth factor beta (TGF-beta) pathway--also may be inactivated by allelic loss on chromosome 18q. In addition, mutation of the tumor-suppressor gene p53 on chromosome 17p appears to be a late phenomenon in colorectal carcinogenesis. This mutation may allow the growing tumor with multiple genetic alterations to evade cell cycle arrest and apoptosis. Neoplastic progression is probably accompanied by additional, undiscovered genetic events, which are indicated by allelic loss on chromosomes 1q, 4p, 6p, 8p, 9q, and 22q in 25% to 50% of colorectal cancers. Recently, a third class of genes, DNA repair genes, has been implicated in tumorigenesis of colorectal cancer. Study findings suggest that DNA mismatch repair deficiency, due to germline mutation of the hMSH2, hMLH1, hPMS1, or hPMS2 genes, contributes to development of hereditary nonpolyposis colorectal cancer. The majority of tumors in patients with this disease and 10% to 15% of sporadic colon cancers display microsatellite instability, also know as the replication error positive (RER+) phenotype. This molecular marker of DNA mismatch repair deficiency may predict improved patient survival. Mismatch repair deficiency is thought to lead to mutation and inactivation of the genes for type II TGF-beta receptor and insulin-like growth-factor II receptor. Individuals from families at high risk for colorectal cancer (hereditary nonpolyposis colorectal cancer or familial adenomatous polyposis) should be offered genetic counseling, predictive molecular testing, and when indicated, endoscopic surveillance at appropriate intervals. Recent studies have examined colorectal carcinogenesis in the light of other genetic processes. Telomerase activity is present in almost all cancers, including colorectal cancer, but rarely in benign lesions such as adenomatous polyps or normal tissues. Furthermore, genetic alterations that allow transformed colorectal epithelial cells to escape cell cycle arrest or apoptosis also have been recognized. In addition, hypomethylation or hypermethylation of DNA sequences may alter gene expression without nucleic acid mutation.  相似文献   

10.
11.
12.
Recent developments in molecular biology and the accessibility of techniques for clinical research have led to a better understanding of the background of common thyroid diseases. The cloning and sequencing of the thyroid stimulating hormone receptor, thyroid peroxidase and thyroglobulin, and the characterization of the protein-DNA interaction during thyroid hormone action, as well as the discovery of intracellular signal transduction pathways were the most important steps which resulted in new diagnostic and therapeutic approaches. New explanations of thyroid autoimmune processes are being investigated.  相似文献   

13.
Molecular biology of muscle development   总被引:1,自引:0,他引:1  
The UL52 and UL53 genes of herpes simplex virus type-1 are both located in the BamHI-L DNA fragment, with an overlap of 14 amino acids. An RNase protection experiment was designed to determine the 5' termini of both the UL52 and UL53 mRNAs. The 5' end of the UL52 mRNA was found to be located 100 bp upstream of its ATG initiation codon. Surprisingly, the 5' terminus of the UL53 gene was found to be downstream of its putative initiation codon. Therefore, it was suggested that the translation of the UL53 open reading frame (ORF) starts at an internal initiation codon that is located 55 codons downstream of the putative one. A hybrid selection experiment was performed in which the UL53-specific mRNA was selected from BSC-1 cells infected with HSV-1 KOS and translated in vitro. The translation product of the UL53 message was found to be 32 kD (shorter than the original 37.5 kD ORF). The size of the protein obtained corresponds with the expected translation product starting at the downstream initiation codon. Analysis of the sequence upstream of this initiation codon reveals the presence of a promotor sequence. Therefore, we suggest that the UL53 protein is 54 amino acids shorter than was previously suggested and is located at coordinates 112,341-113,193.  相似文献   

14.
15.
Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem of vertebrates. Glycine is accumulated into synaptic vesicles by a proton-coupled transport system and released to the synaptic cleft after depolarization of the presynaptic terminal. The inhibitory action of glycine is mediated by pentameric glycine receptors (GlyR) that belong to the ligand-gated ion channel superfamily. The synaptic action of glycine is terminated by two sodium- and chloride-coupled transporters, GLYT1 and GLYT2, located in the glial plasma membrane and in the presynaptic terminals, respectively. Dysfunction of inhibitory glycinergic neurotransmission is associated with several forms of inherited mammalian myoclonus. In addition, glycine could participate in excitatory neurotransmission by modulating the activity of the NMDA subtype of glutamate receptor. In this article, we discuss recent progress in our understanding of the molecular mechanisms that underlie the physiology and pathology of glycinergic neurotransmission.  相似文献   

16.
17.
18.
Understanding of microscopic behaviour of biological membrane is crucial for designing of molecules to control transport properties of the membranes. Phospholipid-water forms a good model system to study ligand induced structural and dynamical changes in membrane. The review has its main focus on molecular dynamics (MD) simulation of phospholipid bilayers. A brief summary of the current status of structure of phospholipid membranes based on different physico-chemical measurements is given. We discuss here mainly results of MD simulations in the recent years on hydrated phospholipid bilayers and their interaction with ligands. Simulation parameters as: choice of initial system, force fields, protocols for simulation are compared. Main results on: order parameter, head group and chain conformation, water penetration profile, chain tilts, pair-correlation function between atoms of lipid and water, diffusion of ions and ligands are discussed. The review gives application and limitation of MD method for studying lipid water system.  相似文献   

19.
Site-directed mutagenesis was used to investigate the loading of iron into rat liver ferritin by ceruloplasmin. Changes were made in the H chain to investigate the role of tyrosines involved in an inherent ferroxidase activity thought to be involved in the self-loading of iron into ferritin. Mutation Y34F affected the rate of iron loading by ceruloplasmin and incorporation of the oxidized iron into the core. Mutation Y29R (making it analogous to the L chain) had no effect on iron oxidation but slightly decreased core formation. A double mutation in the L chain, to open the alpha-helix bundle channel, and R25Y, making the protein more analogous to the H chain, increased the amount of iron incorporated into the core, again suggesting that this Tyr is involved in ligand exchange for core formation. Additional changes in the L chain involving the BC loop suggest that the entire BC loop is involved in the association of ferritin with ceruloplasmin, increasing its ferroxidase activity and the rate of iron loading into ferritin.  相似文献   

20.
The aim of the present study was to investigate the role of the cholesteryl ester transfer protein (CETP) and the phospholipid transfer protein (PLTP) in determining the size distribution of high density lipoproteins (HDL) in human plasma. Whereas both purified CETP and PLTP preparations were able to promote the size redistribution of isolated HDL3, CETP favored the emergence of small HDL, while PLTP induced the formation of both small and large conversion products. When the total plasma lipoprotein fractions isolated from nine distinct subjects were incubated for 24 h at 37 degrees C with either purified PLTP or purified CETP, significant alterations in the relative proportions of the five distinct plasma HDL subpopulations, i.e., HDL2b (9.71-12.90 nm), HDL2a (8.77-9.71 nm), HDL3a (8.17-8.77 nm), HDL3b (7.76-8.17 nm), and HDL3c (7.21-7. 76 nm) were also observed. PLTP induced a significant increase in the relative abundance of HDL2b (8.66 +/- 2.34% versus 7.87 +/- 1. 83% in controls; p < 0.01) and a significant decrease in the relative abundance of HDL3a (32.76 +/- 3.42% versus 37.87 +/- 2.62% in controls; p < 0.05). In contrast, CETP significantly reduced the relative proportion of HDL2a (33.03 +/- 2.53% versus 37.56 +/- 6.43% in controls; p < 0.01) but significantly increased the relative proportion of both HDL3b (21.36 +/- 6.97% versus 15.58 +/- 7.75% in controls; p < 0.01) and HDL3c (3.21 +/- 4.84% versus 1.13 +/- 0.56% in controls; p < 0.05). Finally, in order to assess further the physiological relevance of in vitro observations, CETP activity, PLTP activity, and HDL size distribution were determined in plasmas from 33 alcoholic patients entering a cessation program. Alcohol withdrawal was associated with (i) a significant increase in plasma CETP activity (173.5 +/- 70.5%/h/ml before versus 223.2 +/- 69. 3%/h/ml after alcohol withdrawal, p = 0.0007), (ii) a significant reduction in plasma PLTP activity (473.9 +/- 203.7%/h/ml before versus 312.7 +/- 148.4%/h/ml after alcohol withdrawal, p = 0.0001), and (iii) a significant shift of large HDL2b and HDL2a toward small HDL3b and HDL3c. On the one hand, changes in plasma CETP activity correlated negatively with changes in the proportion of HDL2a (r = -0.597, p = 0.0002) and positively with changes in the proportion of HDL3b (r = 0.457, p = 0.0075). On the other hand, changes in plasma PLTP activity correlated positively with changes in the proportion of HDL2b (r = 0.482, p = 0.0045) and negatively with changes in the proportion of HDL3a (r = -0.418, p = 0.0154). Taken together, data of the present study revealed that plasma PLTP and CETP can exert opposite effects on the size distribution of plasma HDL. PLTP can promote the formation of HDL2b particles at the expense of HDL3a, while CETP can promote the formation of HDL3b particles at the expense of HDL2a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号