首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A high-frequency resonant power converter configuration suitable for operation on a 650 V (nominal value) DC bus is described. Selection of the high-frequency switch and an appropriate resonant configuration are discussed. It is shown that a series-parallel resonant converter using insulated gate bipolar transistor (IGBT) gated bipolar/MOSFET cascode switches and operating above resonance is suitable for this application. A simplified analysis, a simple design procedure, and detailed experimental results are presented  相似文献   

2.
This paper deals with high-voltage auxiliary switching-mode power supplies (SMPSs). An overview of the state of the art is given, and a novel solution is proposed. The proposed solution is based on a single-ended flyback or forward topology with the main switch arranged as a series connection of two metal-oxide-semiconductor field-effect transistors (MOSFETs). The bottom MOSFET is driven directly by an ordinary control circuit and gate driver, while the top MOSFET is driven by a floating self-supplied gate driver. The floating gate driver is connected to the input filter capacitors' midpoint. This gate driver plays two roles: driving of the top MOSFET and control of distribution of the blocking voltage among the series-connected MOSFETs, in steady state as well as during commutation. The series connection of lower voltage MOSFETs has two important advantages compared to that of a single high-voltage MOSFET: lower conduction losses and lower cost. When several switches are series connected, each switch supports a fraction of the total blocking voltage, and therefore, each switch can be rated for lower voltage. The total on-state resistance and the cost of such a switch arrangement are lower compared to that of a single switch that supports the full blocking voltage. The proposed SMPS is theoretically analyzed and experimentally verified. The experimental results are presented and discussed.  相似文献   

3.
A series resonant DC link power converter with pulsewidth modulation (PWM) capability and current peak limiting is proposed. When desired, a resonant transition creates notches in the DC link current, allowing the switches of the power converter to synchronize with external PWM strategy. For that, it requires only an additional bidirectional switch. A saturable core (SC) achieves current peak limiting of which the clamping level is automatically adjusted by the current load. Analysis and design procedure are presented for the proposed topology, which does not use any dedicated devices for startup. Simulated and experimental results corroborate the theoretical studies  相似文献   

4.
This paper introduces, analyzes, and experimentally verifies a novel DC/DC converter called the current-source parallel-resonant converter. The converter consists of a large choke inductor, two switches, and a parallel-resonant circuit. Each switch consists of a MOSFET in series with a diode. It has a nonpulsating input current with a very low AC ripple. The MOSFETs are driven with respect to ground and, therefore, have a simple gate-drive circuit. The analysis of the converter is carried out in the frequency domain using Fourier series techniques. Analytical expressions are derived for performance parameters of the converter. A prototype of the converter circuit was designed, built, and tested. The theoretical results were in good agreement with the experimental results  相似文献   

5.
This paper proposes a new soft-transition control strategy for a three-phase zero-current-transition (ZCT) inverter circuit. Each phase leg of the inverter circuit consists of an LC resonant tank, two main switches, and two auxiliary switches. The proposed strategy is realized by planning the switching patterns and timings of these four switches based on the load current information. It enables all the main switches and auxiliary switches to be turned on and turned off under zero-current conditions, and achieves a near zero-voltage turn-on for the main switches. Compared with existing ZCT strategies, the diode reverse recovery current and switching turn-on loss are substantially reduced, the current and thermal stresses in the auxiliary devices are evenly distributed over every switching cycle, and the resonant capacitor voltage stress is reduced from twice the DC bus voltage to 1.3-1.4 times the DC bus voltage. The proposed strategy is also suitable for three-phase power-factor-correction (PFC) rectifier applications. The operation principles, including a detailed analyst based on the state-plane technique, and a design rule are described in this paper. The circuit operation is first verified by a computer simulation, and is then tested with a 50-kW three-phase inverter to the full power level together with a three-phase induction motor in a closed-loop speed/torque control. Significant reductions in switching losses and voltage/current stresses over existing techniques have been experimentally demonstrated  相似文献   

6.
In this paper, we have designed a double-gate MOSFET and compared its performance parameters with the single-gate MOSFET as RF CMOS switch, particularly the double-pole four-throw (DP4T) switch, for the wireless telecommunication systems. A double-gate radio-frequency complementary metal-oxide-semiconductor (DG RF CMOS) switch operating at the frequency of microwave range is investigated. This RF switch is capable to select the data streams from antennas for both the transmitting and receiving processes. We emphasize on the basics of the circuit elements (such as drain current, threshold voltage, resonant frequency, resistances at switch ON condition, capacitances, and switching speed) required for the integrated circuit of the radio frequency sub-system of the DG RF CMOS switch and the role of these basic circuit elements are also discussed. These properties presented in the switches due to the double-gate MOSFET and single-gate MOSFET have been discussed.  相似文献   

7.
ABSTRACT

In the paper, the novel topology of the resonant DC link three-level soft-switching inverter is proposed to reduce switching losses and improve the efficiency of three-level inverter at high switching frequency. Symmetrical auxiliary resonant circuits are set in the DC link of three-level hard-switching inverter. Moreover, the terminal voltage of the resonant capacitors between the DC buses periodically drops to zero via the resonance of auxiliary circuits. Furthermore, under such condition, the main switches of the three-level inverter would be operated, in order to achieve zero-voltage switching. Based on the equivalent circuits in different operating modes, the paper analyses the working process of the soft-switching inverter in detail. In addition, a 3 kW laboratory prototype of resonant DC link three-phase three-level soft-switching inverter is built. The experimental results show that the main switches and auxiliary switches of the inverter are operated under soft-switching conditions, and the efficiency is significantly improved compared with the three-level hard-switching inverter. Therefore, the proposed topology can effectively reduce switching losses and prove to be more practical in engineering.  相似文献   

8.
为了改善逆变器的性能,提出了一种辅助电路与主开关并联的单相全桥节能逆变器.逆变器采用受限单极式正弦脉宽调制(Sinusoidal Pulse Width Modulation,SPWM)方法,在每个开关周期,只需要控制1个主开关和1个辅助开关的切换,辅助开关可以采用固定占空比控制,而且不需要设定谐振电流阈值来控制辅助开关.在每个开关周期的换流过程中,需要切换的主开关所并联的谐振电容的电压能变化到零,主开关能实现零电压软开通.辅助电路中无器件直接串联在直流母线上,可有效降低辅助电路通态损耗.分析了电路工作原理,实验结果表明主开关和辅助开关都实现了软切换.因此该拓扑能有效降低开关损耗和提高逆变器效率.  相似文献   

9.
The series resonant DC-link inverter is an attractive circuit topology for interfacing a DC current with a three-phase AC system. It uses gate turn-off thyristors (GTOs) as semiconductor switches. The conventional solution requires an additional series diode to perform the turn off process and to enable forward recovery of the GTO. This paper uses a single GTO along with a special gate drive to provide reverse and forward recovery. A new device testing circuit was designed to create the same electrical and thermal stresses as in a series resonant DC-link inverter. Experimental results using 2000 A GTOs at 26 kHz switching frequency demonstrate that the total device losses are reduced, while the hold-off time is slightly increased. The new single-device solution makes resonant switching attractive for very high-power applications  相似文献   

10.
This paper gives the theory and experimental results for a current-source parallel-resonant inverter with a transformer used to change voltage levels and provide isolation. The analysis is performed in the frequency domain using Fourier series techniques to predict output power, efficiency, DC-to-AC voltage transfer function, and component voltage and current stresses. The inverter consists of two switches, a large choke inductor, a transformer, and a parallel-resonant circuit. The magnetizing inductance of the transformer is used as the inductance of the parallel-resonant circuit, thereby requiring one less component. Each switch consists of a MOSFET in series with a diode. The MOSFETs have their sources grounded so there is no need for a complicated gate-drive circuit. An inverter was designed and constructed. The DC input voltage was 156 V and the output voltage was a sine wave with a peak value of 224 V at an operating frequency of 50 kHz. The output power at full load was 100 W  相似文献   

11.
A fully soft-switched boost-converter using a one auxiliary switch is presented here. It uses the minimum number of components in the auxiliary circuit with minimum current stress of the main switch. Since the resonant capacitor charges only through an inductor and a diode, the circuit conduction losses are minimized. The main and auxiliary insulated gate bipolar transistor (IGBT) switches share a common emitter connection, facilitating direct drive to them. Various operating modes of the converter are presented in detail and analysed. The choice of the resonating capacitor and inductor has been done through an optimization process based on the guiding equations working under different modes. In this optimization process, emphasis has been given on minimum voltage stress on the auxiliary switch for a wide duty cycle range of operation. Based on the design, the principle of operation has been verified with computer simulation. Experimental results from a laboratory prototype with active power factor correction confirms the operation of this converter.  相似文献   

12.
This paper proposes a method of power factor control for the three-phase input current of AC-DC series resonant DC link power converter systems. The proposed system has fast response, using high frequency resonance, soft switching (zero current switching), and natural commutation of thyristor switches. By implementing the PID operation strategy for switching control, the system performs reliable operation in the input power factor control, and the elimination of higher harmonic components can be achieved dramatically. The numerical and experimental results are presented in this paper  相似文献   

13.
This article presents the circuit implementation and design considerations of a zero voltage switching (ZVS) converter with voltage step-up for battery-based applications. An active-clamp circuit including one auxiliary switch and one clamp capacitor is connected in parallel with the main switch to allow resonant behaviour by the output capacitances of switches and transformer leakage inductance during the transition interval. Thus, the ZVS turn-on of switches can be achieved. The switching losses and thermal stresses of the semiconductors are reduced. The circuit configuration, operation principle and design considerations of the converter are discussed in detail. Finally, experiments conducted on a laboratory prototype rated at 200 W are provided to verify the theoretical analysis and the effectiveness of the proposed converter.  相似文献   

14.
This paper discusses the design of a new power switching device with integral antiparallel diode called MOS gated bipolar transistor (MGBT). The upper region of the MGBT device structure is conductivity-modulated by a positive feedback mechanism to give a lower on-state voltage drop as compared to a power MOSFET while having fast switching and fully MOS-gate controlled characteristics. A comprehensive model for the MGBT is developed and simple analytical equations are used to predict the on-state characteristics of the MGBT. The analytical modeling results are in good agreement with experimental results on fabricated 750 V MGBT devices. The experimentally measured characteristics of the integral antiparallel diode in the MGBT are reported for the first time in this paper  相似文献   

15.
Switched-capacitor DC/DC converters with resonant gate drive   总被引:3,自引:0,他引:3  
In this paper, we examine how switched-capacitor (SC) converters can be used in low-voltage low-power DC/DC applications with power management. Analysis of losses is presented to facilitate SC converter design and optimization. A resonant gate drive is proposed to reduce switching losses and simplify control of switches in SC converters. A closed-loop controller is designed to enable and disable oscillations of the resonant gate drive so that the output DC voltage is well regulated down to zero load and so that high efficiency is maintained for a very wide range of loads. Results are experimentally verified on two low-power (0.2 and 5 W) five-one step-down converters with regulated 3 Vdc output and efficiency greater than 80% in a 100-1 load range  相似文献   

16.
介绍一种用于逆变电源功率调节的新型零电压零电流转换(ZVZCT)直流斩波器,克服了传统ZCT斩波器或ZVT斩波器不能零电流开通和负载续流二极管不能软关断的缺点,适合用于以MOSFET为开关器件的高频电源场合。对该变换器的稳定运行情况进行了详细的分析,并进行了仿真验证,仿真结果表明,该ZVZCT软斩波器能可靠地运行在高频场合,能实现较大范围内的电压和功率调节。  相似文献   

17.
The paper presents an approach for the design of high-voltage (HV) current-controlled switches. HV switch structures, properties, application possibilities as well as ways of merging these switches into structure of HV signal processing components, are discussed. New HV switch structures are specialized and modified for specific applications. The switch applications include voltage switching with minimized current-load imposed on circuitry attached to input and output side of the proposed switches, as well as current switching with minimal or no current load to the current-mode signal-path, in HV power and smart-power integrated systems, like DC/DC converters or output power stages. The switch structures and modes of operation are introduced, simulated and discussed.  相似文献   

18.
王强  郭国先  王天施  刘晓琴 《电子学报》2000,48(9):1860-1863
为改善逆变器的运行效率,提出了一种节能型三相谐振直流环节软开关逆变电路,在直流环节增设了辅助电路.当主开关需要切换时,提前使辅助电路进入谐振状态,将直流环节电压变化到零,保证主开关完成零电压软切换,并且辅助开关也能完成软切换.通过控制辅助开关切换的间隔时间来调节直流环节电压保持为零的时间,使逆变器能根据需要来调整脉宽调制策略.详细说明了电路的工作过程.实验结果表明逆变器主开关和辅助开关能完成软切换.因此,该拓扑结构对于研发高性能谐振直流环节逆变器具有借鉴意义.  相似文献   

19.
An intelligent power MOSFET with built-in reverse battery protection, which is important for automotive power switches, has been developed. The protection is accomplished by integrating an additional power MOSFET in series with a power MOSFET and the control circuit of the additional power MOSFET. The reverse battery protection is achieved without using external control signals. The positive drain breakdown voltage for the proposed MOSFET is 71 V and the negative drain current at a drain voltage of -16 V is only -750 μA. The on-state resistance is 170 mΩ. This new intelligent power MOSFET can replace the conventional three-terminal power MOSFET's used in automotive applications  相似文献   

20.
A novel DC-link converter utilizing resonant commutation is presented. Since resonant commutation is accomplished, converter switches are thyristors (SCRs) with lower costs than forced commutated devices. Focus is on the variable-frequency operation of the converter, with potential application in variable-frequency custom power delivery or adjustable-speed motor drives. The converter operates with greater stored energy in the DC link, thus offering current holdup capabilities during a contingency which cannot be attained with a conventional resonant DC-link converter and achieves minimum switching losses without increased conduction losses. Harmonic elimination is achieved by employing sinusoidal pulsewidth modulation (SPWM) control of the converter. Simulation results and experimental validation of the resonant commutation of a low-voltage and low-power laboratory model are discussed. Work in progress and the scope of further work are discussed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号