首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ars operon of plasmid R773 confers resistance to antimonials and arsenicals in Escherichia coli by encoding an ATP-dependent extrusion system for the oxyanions. The catalytic subunit, the ArsA protein, is an ATPase with two nucleotide binding consensus sequences, one in the N-terminal half and one in the C-terminal half of the protein. The ArsA ATPase is allosterically activated by tricoordinate binding of As(3+) or Sb(3+) to three cysteine thiolates. Previous measurements suggested that the intrinsic fluorescence of tryptophans might be useful for examining binding of Mg2+ ATP and antimonite. In the present study an increase in intrinsic tryptophan fluorescence was observed upon addition of Mg2+ ATP. This enhancement was reversed by addition of antimonite. The ArsA protein contains four tryptophan residues: Trp159, Trp253, Trp522, and Trp524. The first two were altered to tyrosine residues by site-directed mutagenesis. Cells expressing both the arsAW159Y and arsAW253Y mutations retained resistance to arsenite, and the purified W159Y and W253Y proteins retained ATPase activity. While the intrinsic tryptophan fluorescence of the W253Y protein responded to addition of Mg2+ ATP, intrinsic tryptophan fluorescence in the purified W159Y protein was no longer enhanced by substrate. These results suggest that Trp159 is conformationally coupled to one or both of the nucleotide binding sites and provides a useful probe for the interaction of effector and substrate binding sites.  相似文献   

2.
Interactions of the DnaK (Hsp70) chaperone from Escherichia coli with substrates are controlled by ATP. Nucleotide-induced changes in DnaK conformation were investigated by monitoring changes in tryptic digestion pattern and tryptophan fluorescence. Using nucleotide-free DnaK preparations, not only the known ATP-induced major changes in kinetics and pattern of proteolysis but also minor ADP-induced changes were detected. Similar ATP-induced conformational changes occurred in the DnaK-T199A mutant protein defective in ATPase activity, demonstrating that they result from binding, not hydrolysis, of ATP. N-terminal sequencing and immunological mapping of tryptic fragments of DnaK identified cleavage sites that, upon ATP addition, appeared within the proposed C-terminal substrate binding region and disappeared in the N-terminal ATPase domain. They hence reflect structural alterations in DnaK correlated to substrate release and indicate ATP-dependent domain interactions. Domain interactions are a prerequisite for efficient tryptic degradation as fragments of DnaK comprising the ATPase and C-terminal domains were highly protease-resistant. Fluorescence analysis of the N-terminally located single tryptophan residue of DnaK revealed that the known ATP-induced alteration of the emission spectrum, proposed to result directly from conformational changes in the ATPase domain, requires the presence of the C-terminal domain and therefore mainly results from altered domain interaction. Analyses of the C-terminally truncated DnaK163 mutant protein revealed that nucleotide-dependent interdomain communication requires a 15-kDa segment assumed to constitute the substrate binding site.  相似文献   

3.
We have characterized the changes in intrinsic fluorescence that the insulin receptor undergoes upon ligand binding and autophosphorylation. The binding of insulin to its receptor results in an increase in the receptor's fluorescence intensity, emission energy and anisotropy. We monitored the time course of the anisotropy change, and these data, coupled with studies monitoring the energy transfer from insulin receptor tryptophan donors to a fluorescent-labeled insulin, allowed us to conclude that the change in anisotropy is due to a conformational change in the receptor induced by hormone binding. Since insulin association is very fast, the time course also allowed us to estimate the slower rate of formation of this conformationally-altered state. The time course of receptor autophosphorylation was measured under similar conditions and was found to be similar to the ligand-induced anisotropy time course. The simultaneous use of two fluorescent-labeled insulin analogs also allowed us to assess the maximum distance between the two hormones bound to the receptor. Addition of ATP produces a large, seemingly instantaneous increase in anisotropy. Our observation that ATP binds to the insulin receptor in the presence and absence of insulin supports the idea that the conformational change produced by insulin binding increases the rate of autophosphorylation rather than increases ATP affinity. A suggested model for these changes is presented.  相似文献   

4.
The mechanism by which ATP binding transduces a conformational change in 70-kDa heat shock proteins that results in release of bound peptides remains obscure. Wei and Hendershot demonstrated that mutating Thr37 of hamster BiP to glycine impeded the ATP-induced conformational change, as monitored by proteolysis [(1995) J. Biol. Chem. 270, 26670-26676]. We have mutated the equivalent resitude of the bovine heat shock cognate protein (Hsc70), Thr13, to serine, valine, and glycine. Solution small-angle X-ray scattering experiments on a 60-kDa fragment of Hsc70 show that ATP binding induces a conformational change in the T13S mutant but not the T13V or T13G mutants. The kinetics of ATP-induced tryptophan fluorescence intensity changes in the 60-kDa proteins is biphasic for the T13S mutant but monophasic for T13V or T13G, consistent with a conformational change following initial ATP binding in the T13S mutant but not the other two. Crystallographic structures of the ATPase fragments of the T13S and T13G mutants at 1.7 A resolution show that the mutations do not disrupt the ATP binding site and that the serine hydroxyl mimics the threonine hydroxyl in the wild-type structure. We conclude that the hydroxyl of Thr13 is essential for coupling ATP binding to a conformational change in Hsc70. Molecular modeling suggests this may result from the threonine hydroxyl hydrogen-bonding to a gamma-phosphate oxygen of ATP, thereby inducing a structural shift within the ATPase domain that couples to its interactions with the peptide binding domain.  相似文献   

5.
ArsA protein, the catalytic component of the plasmid-encoded anion-translocating ATPase in Escherichia coli, contains two consensus nucleotide binding domains, A1 and A2, that are connected by a flexible linker. ATP has previously been shown to cross-link to the A1 domain upon activation with UV light but not to the A2 domain. The ATP analogue, 5'-p-fluorosulfonylbenzoyladenosine (FSBA) was used to probe the nucleotide binding domains of ArsA. The covalently labeled protein was subjected to partial trypsin proteolysis, followed by Western blot analysis of the fragments with the anti-FSBA serum. The N-terminal amino acid sequence of the labeled fragment showed that FSBA binds preferentially to the C-terminal domain A2 both in the absence and the presence of antimonite. Occupancy of the two nucleotide binding sites was determined by protection from trypsin proteolysis. Trypsin cleaved the ArsA protein at Arg290 in the linker to generate a 32-kDa N-terminal and a 27-kDa C-terminal fragment. The 32-kDa fragment is compact and largely inaccessible to trypsin; however, the 27-kDa was cleaved further. Incubation with FSBA, which binds to the C-terminal domain, resulted in significant protection of the 27-kDa fragment. This fragment was not protected upon incubation with ATP alone, indicating that A2 might be unoccupied. However, upon incubation with ATP and antimonite, almost complete protection from trypsin was seen. ATP and FSBA together mimicked the effect of ATP and antimonite, implying that this fully protected conformation might be the result of both sites occupied with the nucleotide. It is proposed that the A1 site in ArsA is a high affinity ATP site, whereas the allosteric ligand antimonite is required to allow ATP binding to A2, resulting in catalytic cooperativity. Thus antimonite binding may act as a switch in regulating ATP binding to A2 and hence the ATPase activity of ArsA.  相似文献   

6.
GRP94, the endoplasmic reticulum Hsp90 paralog, binds a diverse array of peptides, a subset of which are suitable for assembly onto nascent MHC class I molecules. At present, the mechanism, site, and regulation of peptide binding to GRP94 are unknown. Using VSV8, the immunodominant peptide epitope of the vesicular stomatitis virus, and native, purified GRP94, we have investigated GRP94-peptide complex formation. The formation of stable GRP94-VSV8 complexes was slow; competition studies demonstrated that peptide binding to GRP94 was specific. VSV8 binding to GRP94 was stimulated 2-fold or 4-fold, respectively, following chemical denaturation/renaturation or transient heat shock. The activation of GRP94-peptide binding occurred coincident with a stable, tertiary conformational change, as identified by tryptophan fluorescence and proteolysis studies. Analysis of GRP94 secondary structure by circular dichroism spectroscopy indicated an identical alpha-helical content for the native, chemically denatured/renatured, and heat-shocked forms of GRP94. Through use of the environment-sensitive fluorophores acrylodan and Nile Red, it was observed that the activation of peptide binding was accompanied by enhanced peptide and solvent accessibility to a hydrophobic binding site(s). Peptide binding to native or activated GRP94 was identical in the presence or absence of ATP or ADP. These results are discussed with respect to a model in which peptide binding to GRP94 occurs within a hydrophobic binding pocket whose accessibility is conformationally regulated in an adenine nucleotide-independent manner.  相似文献   

7.
The UvrA and UvrB proteins form part of the UvrABc endonuclease, which is responsible for nucleotide excision repair in Escherichia coli. Using a mobility shift gel assay we have studied the binding of UvrA dimer, UvrB monomer and UvA(2)B trimer complexes with 40, 50 and 136 bp (32)P-end-labelled DNA fragments adducted with aflatoxin B(1). UvrA was shown to re-associate with adduct specific UvrB: DNA complexes, a phenomenon which could be reversed by the addition of 500 mM potassium chloride or anti-UvrA anti-sera. Re-association was shown to be UvrA concentration dependent. Re-association of UvrA(2)B to the UvrB:DNA complex was not seen. We have also shown that the UvrB:DNA complex, in the case of aflatoxin B(1), is extremely stable with a half-life excess of 400 min and that fragment termini are not a specific substrate for UvrA binding.  相似文献   

8.
The binding of ligands to phosphofructokinase 2 (Pfk-2) from Escherichia coli induces changes in the fluorescence emission properties of its single tryptophan residue, Trp88, suggesting that upon binding the protein undergoes a conformational change. This fluorescence probe was used to determine the presence of an allosteric site for MgATP2- in the enzyme. Fructose 6-phosphate (fructose-6-P), the first substrate that binds to the enzyme with an ordered bi-bi mechanism, increases the fluorescence up to 30%. The saturation curve for this compound is hyperbolic with a Kd of 6 microM. The titration of Pfk-2 with MgATP2- causes a quenching of fluorescence of about 30% of its initial value, with a blue shift of 7 nm in the emission maximum. The response is cooperative with a Kd of 80 microM and a Hill coefficient of 2. The interaction of MgATP2- cannot take place at the active site in the absence of fructose-6-P, due to the ordered kinetic mechanism. Addition of compounds that bind to the catalytic site of Pfk-2, such as ATP4- or Mg-AMP-PNP, did not produce significant changes in the fluorescence spectrum of Trp88. However, in the absence of Mg2+, the addition of ATP4- to the enzyme-fructose-6-P complex shows a hyperbolic increase of fluorescence of 8%. Acrylamide steady-state quenching experiments for different enzyme-ligand complexes of Pfk-2, indicate that the tryptophan in the enzyme-MgATP2- complex is exposed to a much smaller extent to the solvent than in the free enzyme or in the enzyme-fructose-6-P complex. The effect of the binding of fructose-6-P or MgATP2- on the polarization fluorescence of the emission of Trp88 in Pfk-2 indicates changes in the local mobility of the Trp88 in both enzyme complexes. The average lifetime for Trp88 in Pfk-2 was found to be unusually large, approximately 7.7 ns, and did not vary significantly with the ligation state of the enzyme, which demonstrates that the quenching or enhancement of fluorescence induced by the ligands is mainly due to the complex formation with Pfk-2. These results demonstrate the presence of an allosteric site for MgATP2- in Pfk-2 from E. coli, responsible for the inhibition of the enzyme activity by this ligand.  相似文献   

9.
The binding of carbohydrates to the hemolytic lectin CEL-III isolated from the marine invertebrate Cucumaria echinata was studied. Equilibrium dialysis data suggest that CEL-III has two carbohydrate-binding sites with equal affinity. The binding of specific carbohydrates to CEL-III induces a decrease in the fluorescence intensity at 339 nm and the shift of the fluorescence emission maximum to a wavelength shorter by 3 nm, owing to the change in the environment of tryptophan. By analyzing the change in the fluorescence intensity at 339 nm as a function of the concentration of carbohydrates, the association constants for binding of individual carbohydrates to CEL-III were calculated. The results indicate that GalNAc, lactulose, and lactose are bound by CEL-III with fairly high affinity among the carbohydrates tested. The pH-dependence profile of the association constant of lactose suggests that CEL-III binds carbohydrates with highest affinity around pH 5.0. Modification of CEL-III with N-bromosuccinimide produces an oxidized derivative, in which four tryptophan residues/mol were oxidized and had no hemolytic activity. However, two out of these four tryptophans escaped from the modification in the presence of specific saccharides and the resulting derivative retained fairly high hemolytic activity.  相似文献   

10.
Two site-directed mutants of Escherichia coli DNA helicase II (UvrD) were constructed to examine the functional significance of motif VI in a superfamily I helicase. Threonine 604 and arginine 605, representing two of the most highly conserved residues in motif VI, were replaced with alanine, generating the mutant alleles uvrD-T604A and uvrD-R605A. Genetic complementation studies indicated that UvrD-T604A, but not UvrD-R605A, functioned in methyl-directed mismatch repair and UvrABC-mediated nucleotide excision repair. Both mutant enzymes were purified and single-stranded DNA (ssDNA)-stimulated ATP hydrolysis, duplex DNA unwinding, and ssDNA binding were studied in the steady-state and compared to wild-type UvrD. UvrD-T604A exhibited a serious defect in ssDNA binding in the absence of nucleotide. However, in the presence of a non-hydrolyzable ATP analog, DNA binding was only slightly compromised. Limited proteolysis experiments suggested that UvrD-T604A had a "looser" conformation and could not undergo conformational changes normally associated with ATP binding/hydrolysis and DNA binding. UvrD-R605A, on the other hand, exhibited nearly normal DNA binding but had a severe defect in ATP hydrolysis (kcat=0.063 s-1 compared to 162 s-1 for UvrD). UvrD-T604A exhibited a much less severe decrease in ATPase activity (kcat=8.8 s-1). The Km for ATP for both mutants was not significantly changed. The results suggest that residues within motif VI of helicase II are essential for multiple biochemical properties associated with the enzyme and that motif VI is potentially involved in conformational changes related to the coupling of ATPase and DNA binding activities.  相似文献   

11.
Heparin causes an allosterically transmitted conformational change in the reactive center loop of antithrombin and a 40% enhancement of tryptophan fluorescence. We have expressed four human antithrombins containing single Trp --> Phe mutations and determined that the fluorescence of antithrombin is a linear combination of the four tryptophans. The contributions to the spectrum of native antithrombin at 340 nm were 8% for Trp-49, 10% for Trp-189, 19% for Trp-225, and 63% for Trp-307. Trp-225 and Trp-307 accounted for the majority of the heparin-induced fluorescence enhancement, contributing 37 and 36%, respectively. Trp-49 and Trp-225 underwent spectral shifts of 15 nm to blue and 5 nm to red, respectively, in the antithrombin-heparin complex. The blue shift for Trp-49 is consistent with partial burial by contact with heparin, whereas the red shift for Trp-225 and large enhancement probably result from increased solvent access upon heparin-induced displacement of the contact residue Ser-380. The enhancement for Trp-307 may result from the heparin-induced movement of helix H seen in the crystal structure. The time-resolved fluorescence properties of individual tryptophans of wild-type antithrombin were also determined using the four variants and showed that Trp-225 and Trp-307 experienced the largest change in lifetime upon heparin binding, providing support for the steady-state fluorescence deconvolution.  相似文献   

12.
Open-channel blockers of the nicotinic acetylcholine receptor (nAcChR) are widely thought to act sterically by entering and "plugging" the open channel of the nAcChR. However, quinacrine, a fluorescent open-channel blocker, has been recently shown to bind to the nAcChR at a site near the lipid bilayer while the receptor is in a closed, desensitized state, suggesting that at least one open-channel blocker might act allosterically outside the channel [Valenzuela et al. (1992) J. Biol. Chem. 267, 8238]. To determine whether or not quinacrine also binds near the lipid bilayer when the receptor is in an open state, a short-range lipophilic quencher (5-doxylstearate, 5-SA) was used to assess the proximity of the nAcChR-bound quinacrine to the lipid bilayer while the receptor was transiently open by an agonist. Initial experiments using a stopped-flow instrument established the conditions required to monitor a portion of the changes in quinacrine fluorescence associated with its binding to the receptor in the open state. 5-SA (80 microM) reduced the amplitude of the rapid agonist-induced change in quinacrine emission to 44% +/- 12% of the control value, indicating that the quinacrine was binding to a site proximal to the membrane-partitioned 5-SA. Control experiments established that 5-SA had no effect on the ability of the receptor to undergo agonist-induced conformational changes, suggesting that little, if any, 5-SA distributed into the channel lumen and perturbed the functional activity of the receptor. Together, the results indicate that quinacrine binds to a site on the open receptor that is in contact with the lipid bilayer and not in the channel lumen.  相似文献   

13.
The eukaryotic cytosolic chaperonins are large heterooligomeric complexes with a cylindrical shape, resembling that of the homooligomeric bacterial counterpart, GroEL. In analogy to GroEL, changes in shape of the cytosolic chaperonin have been detected in the presence of MgATP using electron microscopy but, in contrast to the nucleotide-induced conformational changes in GroEL, no details are available about the specific nature of these changes. The present study identifies the structural regions of the cytosolic chaperonin that undergo conformational changes when MgATP binds to the nucleotide binding domains. It is shown that limited proteolysis with trypsin in the absence of MgATP cleaves each of the eight subunits approximately in half, generating two fragments of approximately 30 kDa. Using mass spectrometry (MS) and N-terminal sequence analysis, the cleavage is found to occur in a narrow span of the amino acid sequence, corresponding to the peptide binding regions of GroEL and to the helical protrusion, recently identified in the structure of the substrate binding domain of the archeal group II chaperonin. This proteolytic cleavage is prevented by MgATP but not by ATP in the absence of magnesium, ATP analogs (MgATPyS and MgAMP-PNP) or MgADP. These results suggest that, in analogy to GroEL, binding of MgATP to the nucleotide binding domains of the cytosolic chaperonin induces long range conformational changes in the polypeptide binding domains. It is postulated that despite their different subunit composition and substrate specificity, group I and group II chaperonins may share similar, functionally-important, conformational changes. Additional conformational changes are likely to involve a flexible helix-loop-helix motif, which is characteristic for all group II chaperonins.  相似文献   

14.
Structural intermediates generated during incision of damaged DNA by the Uvr(A)BC endonuclease were probed with monoclonal antibodies (mAbs) raised against the Escherichia coli UvrB protein. It was found that the epitope of B2C5 mAb, mapped at amino acids (aa) 171-278 of UvrB, is not accessible in any of the preformed Uvr intermediates. Preformed B2C5-UvrB immunocomplexes, however, inhibited formation of those intermediates. B2C5 mAb seems to interfere with the formation of the UvrA-UvrB complex due to overlapping of its epitope and the UvrA binding region of UvrB. Conversely, the epitope of B3C1 mAb (aa 1-7 and/or 62-170) was accessible in all Uvr intermediates. The epitope of B*2E3 mAb (aa 171-278) was not accessible in any of the nucleoprotein intermediates preceding UvrB-DNA preincision complex. However, B*2E3 was able to immunoprecipitate this complex and to inhibit overall incision. B2A1 mAb (aa 8-61) inhibited formation of those Uvr intermediates requiring ATP binding and/or hydrolysis by UvrB. B*2B9 mAb (aa 473-630) inhibited Uvr nucleoprotein complexes involving UvrB. B*2B9 seems to prevent the binding of the UvrA-UvrB complex to DNA. The epitope of the B*3E11 mAb (aa 379-472) was not accessible in Uvr complexes formed at damaged sites. These results are discussed in terms of structure-functional mapping of UvrB protein.  相似文献   

15.
The ars operon of plasmid R773 encodes an ATP-dependent extrusion pump for arsenite and antimonite in Escherichia coli. The ArsA ATPase is the catalytic subunit of the pump protein, with two nucleotide binding consensus sequences, one in the NH2-terminal half and one in the COOH-terminal half of the protein. A 12-residue consensus sequence (DTAPTGHTIRLL) has been identified in ArsA homologs from eubacteria, archebacteria, fungi, plants, and animals. ArsA enzymes were constructed containing single tryptophan residues at either end of this conserved sequence. The emission spectrum of the fluorescence of the tryptophan on the COOH-terminal end (Trp-159) indicated a relatively hydrophilic environment for this residue. An increase in intrinsic tryptophan fluorescence and a blue shift of the maximum emission wavelength were observed upon addition of MgATP, indicating movement of Trp-159 into a relatively less polar environment. No fluorescence response was observed with MgADP, with nonhydrolyzable ATP analogs, or with MgATP by catalytically inactive enyzmes. This suggests that the location Trp-159 is shifted only during hydrolysis of ATP. In contrast, the emission spectrum of Trp-141, located on the NH2-terminal side of the consensus sequence, indicated a relatively nonpolar environment. The maximum emission wavelength red shifted upon addition of MgADP. MgATP slowly produced a response that correlated with product formation, suggesting that the environment of Trp-141 is sensitive only to MgADP binding. Thus, during ATP hydrolysis the COOH-terminal end of the conserved domain moves into a less polar environment, whereas the NH2-terminal end moves into a more hydrophilic environment as product is formed. A hypothesis is presented in which the conserved domain of ArsA and homologs is an energy transduction domain involved in transmission of the energy of ATP hydrolysis to biological functions such as transport.  相似文献   

16.
The role of the highly conserved residues in the gamma-phosphate binding site of myosin upon myosin motor function was studied. Each of five residues (Ser181, Lys185, Asn235, Ser236, and Arg238) in smooth muscle myosin was mutated. K185Q has neither a steady state ATPase nor an initial Pi burst. Although ATP and actin bind to K185Q, it is not dissociated from actin by ATP. These results indicate that the hydrolysis of bound ATP by K185Q is inhibited. S236T has nearly normal basal Mg2+-ATPase activity, initial Pi burst, ATP-induced enhancement of intrinsic tryptophan fluorescence, and ATP-induced dissociation from actin. However, the actin activation of the Mg2+-ATPase activity and actin translocation of S236T were blocked. In contrast S236A has nearly normal enzymatic properties and actin-translocating activity. These results indicate that 1) the hydroxyl group of Ser236 is not critical as an intermediary of proton transfer during the ATP hydrolysis step, and 2) the bulk of the extra methyl group of the threonine residue in S236T blocks the acceleration of product release from the active site by actin. Arg238, which interacts with Glu459 at the Switch II region, was mutated to Lys and Ile, respectively. R238K has essentially normal enzymatic activity and motility. In contrast, R238I does not hydrolyze ATP or support motility, although it still binds ATP. These results indicate that the charge interaction between Glu459 and Arg238 is critical for ATP hydrolysis by myosin. Other mutants, S181A, S181T, and N235I, showed nearly normal enzymatic and motile activity.  相似文献   

17.
Escherichia coli dihydrofolate reductase contains five tryptophan residues that are spatially distributed throughout the protein and located in different secondary structural elements. When these tryptophans are replaced with [6-19F]tryptophan, distinct native and unfolded resonances can be resolved in the 1-D 19F NMR spectra. Using site-directed mutagenesis, these resonances have been assigned to individual tryptophans [Hoeltzli, S. D., and Frieden, C. (1994) Biochemistry 33, 5502-5509], allowing both the native and unfolded environments of each tryptophan to be monitored during the refolding process. We have previously used these assignments and stopped-flow NMR to investigate the behavior of specific regions of the protein during refolding of apo dihydrofolate reductase from urea in real time. These studies now have been extended to investigate the real time behavior of specific regions of the protein during refolding of dihydrofolate reductase in the presence of either NADP+ or dihydrofolate. As observed for the apoprotein, in the presence of either ligand, unfolded resonance intensities present at the first observed time point (1.5 s) disappear in two phases similar to those monitored by either stopped-flow fluorescence or circular dichroism spectroscopy. The existence of unfolded resonances which disappear slowly indicates that an equilibrium exists between the unfolded side chain environment and one or more intermediates, and that formation of at least one intermediate is cooperative. The results of this study are consistent with previous fluorescence studies demonstrating that dihydrofolate binds at an earlier step in the folding process than does NADP+ [Frieden, C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 4413-4416] and provide a structural interpretation of the previous results. In the apoprotein as well as in the presence of either ligand, the protein folds via at least one cooperatively formed, solvent-protected intermediate which contains secondary structure. In the presence of NADP+, a stable native-like side chain environment forms in the regions around tryptophans 30, 133, and 47 in an intermediate which cannot bind NADP+ tightly. Native side chain environment forms in the regions around tryptophans 22 and 74 only in the structure which is able to bind NADP+ tightly. In the presence of dihydrofolate, stable native-like side chain environment forms cooperatively in the regions around each tryptophan in a non-native intermediate which must undergo a conformational change prior to binding NADP+. The presence of ligands influences the processes which occur during the folding of dihydrofolate reductase, and the ligand may in effect serve as part of the hydrophobic core.  相似文献   

18.
The conformational changes associated with the interaction of sodium laurate with the recombinant heme domain for cytochrome P-450BM3 have been investigated by steady-state and picosecond-time-resolved fluorescence spectroscopy. The steady-state quenching experiments show that while all the five tryptophan residues are accessible to acrylamide in the free enzyme as well as the enzyme x substrate complex, the number of tryptophan residues accessible to ionic quenchers decreases on interaction of the substrate with the enzyme. This indicates that some of the tryptophan residues move towards the core of the protein on interaction with the substrate. The number of tryptophan residues accessible to the solvent as determined by the calculation of the solvent-accessible area for the free enzyme agrees with the values obtained by the quenching experiments. The time-resolved fluorescence studies carried out by means of the time-correlated single-photon-counting technique show that the fluorescence-decay curve is best fitted to a three-exponential model (0.2, 1.0 and 5.4 ns). Lifetime distributions, as recovered by the maximum-entropy method, agree with the discrete exponential model. The binding of the substrate does not lead to any significant change in the lifetime components of the enzyme, indicating that the tryptophan residues are possibly away from the substrate-binding domain. The decay-associated emission spectra and the magnitudes of amplitude of different lifetimes indicate that the shortest lifetime component (tau1) originates from the three tryptophan residues that are completely or partially accessible to the solvent, and tau2 originates from the tryptophan residues that are buried in the core of the enzyme and not accessible to the solvent. X-ray crystallographic data and solvent-acessible-area calculations have been used to identify these residues.  相似文献   

19.
20.
Helicobacter pylori persists in the human stomach where it may encounter a variety of DNA-damaging conditions, including gastric acidity. To determine whether the nucleotide excision repair (NER) pathway contributes to the repair of acid-induced DNA damage, we have cloned the putative H. pylori NER gene, uvrB. Degenerate oligonucleotide primers based on conserved amino acid residues of bacterial UvrB proteins were used in PCR with genomic DNA from H. pylori strain 84-183, and the 1.3-kb PCR product from this reaction was used as a probe to clone uvrB from an H. pylori genomic library. This plasmid clone had a 5.5-kb insert containing a 2.0-kb ORF whose predicted product (658 amino acids; 75.9 kDa) exhibited 69.5% similarity to E. coli UvrB. We constructed an isogenic H. pylori uvrB mutant by inserting a kanamycin-resistance cassette into uvrB and verified its proper placement by Southern hybridization. As with uvrB mutants of other bacteria, the H. pylori uvrB mutant showed a greatly increased sensitivity to the DNA-damaging agents methylmethane sulfonate and ultraviolet radiation. The uvrB mutant also was significantly more sensitive than the wild-type strain to killing by low pH, suggesting that the H. pylori nucleotide excision repair (NER) pathway is involved in the repair of acid-induced DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号