首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A pilot-scale sludge treatment plant was built to investigate the feasibility of ozonation processes for waste activated sludge treatment. Ozonation of wastewater sludge resulted in mass reduction by mineralization as well as by supernatant and filtrate recycle. Another advantage of sludge ozonation is a significant improvement of settleability and dewaterability. Experimental results showed that mass reduction of 70% and volume reduction of 85% compared with the control sludge was achieved through the sludge ozonation at a dose of 0.5?gO3/gDS. It is also interesting to note that the filterability deteriorates up to ozone dose of 0.2?gO3/gDS and then improves considerably at a higher ozone dose. The filterability could be improved by chemical conditioning even at a low ozone dose. The economic feasibility by cost analysis reveals that ozonation processes can be more economical than other alternative processes for sludge treatment and disposal at small-sized wastewater treatment plants.  相似文献   

2.
The combined process – aerobic bio-oxidation with activated carbon addition and ozonation was studied (ABO/AC/O3). The performance of the process was compared with conventional aerobic bio-oxidation (ABO). The studies were carried out in two continuous and periodic reactors to evaluate the purification efficiencies (in terms of COD, BOD and resorcinols removal), excess sludge generation and stability of the bioreactors against shock loadings. The parameters in continuous combined process were as follows: organics loading was 620 mgCOD/(day·L), activated carbon concentration 1g/L and ozone dose 2.45 mgO3/L (mg ozone per liter of treated water). In periodic reactors the combined process was studied at lower activated carbon concentration and ozone dose (0.3 g/L and 0.57 mg/L respectively).

The results indicated that compared with conventional ABO, the co-effect of AC addition and short-termed (less than 1 week) or intermittent ozonation improved the removal of COD and BOD, while the longer period of ozonation resulted in reduction of excess sludge concentration in the bioreactor. The impact of AC and ozone on the ABO in the combined process did not concern only increased biomass activity, but AC and ozone improved also settleability of activated sludge and enhanced stability of the bioreactor to shock loadings.  相似文献   


3.
The current study focused on treatment of phenolic wastewater using an integrated process – dosing of ozone directly to activated sludge. The main goal was to analyze the effect of ozonation on viability of activated sludge in different systems – activated sludge in distilled water and activated sludge in wastewater. Two viability detection methods, oxygen uptake (OUR) rate and adenosine-5'-triphosphate measurement (ATP), were compared. The linear correlation between ATP and OUR measurements in studied range was found to be good (r2 = 0.90). In case of ozonation of activated sludge in wastewater, ozone doses up to 42 mgO3·gMLVSS?1 did not influence the viability of sludge. In addition, contrary to ozonation of sludge in distilled water, soluble COD was reduced by 15.6% (at ozone dose of 42 mgO3·gMLVSS?1).  相似文献   

4.
New strategies for sludge stabilization and mineralization need to be developed since the use of sludge in agriculture is debatable and sludge incineration cannot be a systematic solution. Minimization of sludge production should be preferred. In this work, the effect of ozone on activated sludge solubilization and mineralization during batch experiments is assessed by establishing carbon and ozone mass balances. After extended ozonation of the sludge, more than 90% of the particulate carbon is modified. Depending on the experimental conditions, from 15 to 50% is found in a soluble form and from 35% to 95% was mineralized. The VSS/SS ratio decreases from 86% to less than 50% illustrating the sludge mineralization. The initial rate of ozone consumption by the sludge is very high (estimated value: 30 mgO3/g VSS.min) and corresponds to high rates of carbon solubilization and mineralization. More than 50% of the carbon obtained after ozonation is found to be readily biodegradable using a short-term BOD procedure.  相似文献   

5.
The combination of ozonation with UV irradiation can remove Tropaeolin O (AO6) and its by-products effectively and completely. The ozone dose affects the rate of decolorization, AO6 species removal, and dissolved organic carbon (DOC) reduction significantly. After 240 minutes of ozonation, the average DOC removal efficiency (ηDOC) for O3 alone was about 0.79, while ηDOC for O3/UV was 1.0. The average DOC removal rate was low at early stage of ozonation due to decolorization and low DOC. At later stage of ozonation, average DOC removal rate decreases because of the formation of persistent intermediates. The ozone consumption was consistent with ηDOC. The ratio of ozone consumption to ozone applied decreased from 14 to 12% when ηDOC < 40% because the decolorization in the early stage of the ozonation of AO6 may consume a relatively large amount of ozone. It was found that NO2, NO, CO2, and small amount of SO2 was detected in the off-gas. The effective concentration (EC50) increased from 23.48% to 100%, suggesting that the toxic reduction was achieved, and O3/UV system was superior to O3 alone system  相似文献   

6.
Chemical treatment processes such as ozonation have mostly been considered as an efficient way for bio-solids minimization. The improvement of sludge dewatering was more a welcoming side-effect in these sequential processes. However, sometimes the loaded ozone dose to the sludge has a negative effect on dewaterability. This work address the most important issue found — the effect of ozone on sludge dewaterability in a single ozonation processes as well as in a sequential ozonation biological processes. It was found that the maximum sludge dewaterability was achieved with an ozone dose of 0.05 gO3/gTSS. This value was found to be less than the required ozone dosage that leads to sludge disintegration. However, it was observed that the sequential ozone and aerobic treatment allows further strong improvement of dewatering efficiencies.  相似文献   

7.
The applicability of sludge ozonation on wastewater treatment processes was investigated to reduce the amount of excess sludge without losing phosphorus removal efficiency. Solubilization degree per ozone consumption for general sludge was in the range from 2.4 to 5.8 gSS/O3 and from 4.1 to 7.7 gCOD/gO3. Around 80 to 90% of solubilized organics was biodegradable at a solubilization degree of 0.3. Based on the experimental results, a lab-scale plant with sludge ozonation and phosphorus crystallization was constructed to investigate the treatment performance. Amount of excess sludge was reduced by 93% with almost complete removal of soluble BOD and phosphorus removal efficiency of more than 80%. The percentage of the effluent CODCr discharge increased from 10% to 14–17% after installing ozonation and crystallization because of the formation of non-biodegradable organic substances in ozonation process. Energy consumption of the innovative advanced process is comparable or can be even smaller than that of the conventional anaerobic/oxic (A/O) process in spite of the installation of ozonation and crystallization.  相似文献   

8.
BACKGROUND: Ozone is applied in wastewater treatment for effluent water quality improvement (post‐ozonation) as well as for excess sludge reduction (in the recirculation line). There is some evidence that ozone dosed directly to aerobic biooxidation (ABO) process enhances degradation of recalcitrant compounds into intermediates, following their biodegradation in the same reactor. However, no information regarding the influence of ozone on sludge yield in this system was found. Therefore, the current work aimed to evaluate the effect of ozone on the sludge yield when ozone is dosed directly to the ABO process. In addition, batch and continuous treatment schemes for phenolic wastewater treatment are compared. RESULTS: The results revealed that an optimal ozone dose of ~30 mgO3 L?1 day?1 reduced the sludge yield by ~50%, while effluent water quality in terms of total chemical oxygen demand (TCOD), compared with a conventional ABO process, was improved by 35.5 ± 3.6%. Slight improvement in soluble COD removal at the same ozone dose was also detected. The toxicity of effluent water was reduced as the ozone dose was increased. CONCLUSIONS: In an integrated ozonation‐ABO process it is possible to simultaneously reduce sludge yield and to improve effluent water quality, as COD and toxicity are reduced. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
Ozonation of a natural tannin (NT; CODo?=?1195 mg/L; TOCo?=?342 mg/L; BOD5,o?=?86 mg/L) and a synthetic tannin ST; CODo?=?465 mg/L; TOCo?=?55 mg/L; BOD5,o?=?6 mg/L) being frequently applied in the polyamide dyeing process was investigated. Synthetic wastewater samples containing these tannins individually were prepared and subjected to ozonation at varying ozone doses (625– 1250 mgO3/L wastewater), at pH?=?3.5 (the application pH of tannins) and pH?=?7.0 at an ozone dose of 1125 mgO3/L wastewater. The collective environmental parameters COD, TOC, BOD5, UV254 and UV280 (UV absorbance at 254 nm and 280 nm, representing aromatic and unsaturated moieties, respectively) were followed during ozonation. Changes in the biodegradability of the tannins were evaluated in terms of BOD5 measurements conducted before and after ozonation. In addition, activated sludge inhibition tests employing heterotrophic biomass were run to elucidate the inhibitory effect of raw and ozonated textile tannins towards activated sludge biomass. Partial oxidation (45% COD removal at an ozone dose of 750 mg O3/L wastewater and pH?=?3.5) of ST was sufficient to achieve elimination of its inhibitory effect towards heterotrophic biomass and acceptable biodegradability improvement, whereas the inhibitory effect and biodegradability of NT could not be reduced via ozonation under the same reaction conditions.  相似文献   

10.
Intermittent ozonation of a part of the recycle sludge was performed two times a week for a laboratory‐scale reactor at an average ozone dose of 0.019 g O3(gSSozonated)?1. Under these conditions a decrease of about 50% in sludge growth was obtained for the ozone‐treated system, in comparison with the control. As a consequence less sludge had to be removed from the test reactor. Only a slight decrease in quality of effluent was noticed. A comparative cost calculation was made, based on these results, between an ozone‐treated activated sludge system and a traditional activated sludge system. © 2001 Society of Chemical Industry  相似文献   

11.
Recirculating Aquaculture Systems (RAS) reduce water consumption by efficient filtration to maintain appropriate levels of accumulating compounds and sludge. Sludge is mechanically separated by drum filters and disposed of to the detriment of overall system water budgets. Dissolved nitrogen compounds are reduced via nitrification–denitrification filters, requiring commercial external carbon sources. The reuse of sludge after ozone pre-treatment may represent the next step in RAS optimization. The present study analyzes the content of sludge from RAS and tests ozonation as a pre-treatment for recycling as carbon source. The dissociative effect of ozone and the physicochemical changes due to ozonation lead to a significant increase in soluble carbon availability. Predominantly long-chain fatty acid (FA) (saturated and unsaturated) with 16 and 18 carbon atoms independently of the treatment were found in the profiles. Saturated FA concentrations in solution increased after 20, 40, and 60 min ozonation. The solid content of the sludge was practically unaffected by ozonation in terms of FA profile: only saturated FA slightly increases after 40 min treatment. The implications of these findings for denitrifying bacteria are discussed.

Abbreviations: Recirculating Aquaculture Systems (RAS); Advanced Oxidation Processes (AOPs)  相似文献   


12.
The ozonation of wastewater supplied from a treatment plant (Samples A and B) and dye‐bath effluent (Sample C) from a dyeing and finishing mill and acid dye solutions in a semi‐batch reactor has been examined to explore the impact of ozone dose, pH, and initial dye concentration. Results revealed that the apparent rate constants were raised with increases in applied ozone dose and pH, and decreases in initial dye concentration. While the color removal efficiencies of both wastewater Samples A and C for 15 min ozonation at high ozone dosage were 95 and 97%, respectively, these were 81 and 87%, respectively at low ozone dosage. The chemical oxygen demand (COD) and dissolved organic carbon (DOC) removal efficiencies at several ozone dose applications for a 15 min ozonation time were in the ranges of 15–46% and 10–20%, respectively for Sample A and 15–33% and 9–19% respectively for Sample C. Ozone consumption per unit color, COD and DOC removal at any time was found to be almost the same while the applied ozone dose was different. Ozonation could improve the BOD5 (biological oxygen demand) COD ratio of Sample A by 1.6 times with 300 mg dm?3 ozone consumption. Ozonation of acid dyes was a pseudo‐first order reaction with respect to dye. Increases in dye concentration increased specific ozone consumption. Specific ozone consumption for Acid Red 183 (AR‐183) dye solution with a concentration of 50 mg dm?3 rose from 0.32 to 0.72 mg‐O3 per mg dye decomposed as the dye concentration was increased to 500 mg dm?3. © 2002 Society of Chemical Industry  相似文献   

13.
The purpose of this research was the investigation of the ozonation of sludge as a method to improve anaerobic digestion performance in a chemically enhanced primary treatment facility. Batch tests were conducted to evaluate the effect of ozonation on the physicochemical characteristics of both primary and digested sludge. Then, the performance of semi-continuous anaerobic digesters in combination with ozone treatment was investigated (pre-ozonation and post-ozonation). Ozonation of primary sludge did not increase the soluble COD nor the biodegradable COD, but resulted in the mineralization of a fraction of the organic matter into CO2. However, the ozonation of anaerobic digested sludge resulted in an increase in soluble COD and biodegradable COD and in a small level of mineralization at the dose of 90 mg O3/g COD. Pre-ozonation of primary sludge was not effective in enhancing the performance of the anaerobic digester. The coupling of ozonation and anaerobic digestion by means of the post-ozonation of digested sludge was found to be effective in improving methane production (+16%), for COD removal efficiency and for the dewaterability of anaerobic digesters compared to the control digester.  相似文献   

14.
Properties of activated sludge during ozonation were analyzed. The structure and surface characteristics altered with the increase of ozone dosage. At low ozone dosage, the floc structure was completely dismantled. Floc fragments reformed through reflocculation at an ozone dosage greater than 0.20 g O3·g?1 mixed liquor suspended solids (MLSS). Inactivation of microorganisms in the activated sludge mixture was caused by ozonation. Microbial growth decreased by up to 65% compared to the control. Simultaneously, 92.5% of nucleotide and 97.4% of protein in microbial cells of the sludge were released. Organic substance, nitrogen and phosphorus were released from the sludge during the ozonation process. The initial value of soluble chemical oxygen demand (SCOD) was 72 mg·L?1. When the ozone dosage was 0.12 g O3·g?1 MLSS, the value of SCOD rapidly reached 925 mg·L?1, increased by almost 12-fold. Simultaneously, 54.7% of MLSS was reduced. The composition of MLSS was changed, indicating that the inner water of cells and volatile organic substance decreased during the ozonation process.  相似文献   

15.
The aim of the present study was to improve the anaerobic biodegradability of waste-activated sludge by using ozonation. The effect of different ozone doses was assessed in terms of biogas production, maximum biogas production rate, and concentration of amino acids and long-chain fatty acids in the waste-activated sludge. Four different doses were used: 0.043 gO3 gTSS?1, 0.063 gO3 gTSS?1, 0.080 gO3 gTSS?1, and 0.100 gO3 gTSS?1. The lower doses resulted in biogas production increases and a higher maximum biogas production rate in the anaerobic digestion of waste-activated sludge, while the contrary occurred at higher doses. The amino acids and long-chain fatty acids concentrations decreased when the ozone dose increased. The correlation with the ozone dose was nonlinear for amino acids and linear for long-chain fatty acids. The reaction products of long-chain fatty acids (aldehydes) are proposed as the cause of inhibition observed in the anaerobic digestion of waste-activated sludge treated with higher ozone doses.  相似文献   

16.
该文研究了臭氧技术应用于剩余污泥处理过程中臭氧利用率及污泥的可生化性随时间的变化,组建了臭氧氧化与序批式好氧活性污泥法结合的联合工艺。将臭氧单元处理过的污泥全部回流至曝气池与污水进行合并处理,考察了不同臭氧投加量下联合工艺中剩余污泥的产量和污水处理效果。结果表明,当处理污泥浓度为4 000 mg/L,污泥体积为3 L,臭氧进气浓度为6.5 mg/L,气量为6 L/min时,前20 min的臭氧利用率几乎为100%,随后利用率逐渐降低;污泥的可生化性先降低,而后逐渐升高,在30 min时达到最大,其后又开始下降;当臭氧投加量为0.078 kg O3/kg MLSS时,联合工艺的污泥增长率几乎为0,同时出水水质相对对照组没有明显变化。  相似文献   

17.
Low density polyethylene films were treated by ozone to generate peroxides on the surfaces. The peroxides generated are capable of initiating radical graft polymerization of hydrophilic vinyl monomers onto the polymers, resulting in hydrophilic surfaces. Results of ozonation revealed that molecular ozone instead of hydroxyl radicals was the main oxidant for peroxide generation. A novel approach, aqueous ozonation with the addition of a soluble transitional metal salt, FeCl3, as a homogeneous catalyst, was proposed and proved to be successful in this study. The addition of FeCl3 could increase peroxide generation by 22.7%, compared to its non-catalyzed counterpart. An optimum catalyst concentration, 0.04 g/L, was determined. Also, the effects of pH, ozonation time and applied ozone dose on peroxide generation were investigated. The loss in tensile strength of the films would be 15% or less if the applied ozone dose was not over 2 wt.%. The functional groups generated on the film surfaces were characterized by FTIR, the contact angle and surface roughness of the film were also examined before and after ozonation.  相似文献   

18.
The aim of this study was to compare the efficiency of conventional ozonation and catalytic ozonation (ozone/activated carbon (O3/AC) and ozone/TiO2/activated carbon (O3/TiO2/AC)) in the degradation of methylene blue (MB) component from MB aqueous solution. The removal rates of color and chemical oxygen demand (CODCr) were assessed to screen the most appropriate oxidative process of MB treatment. In this experiment conditions, the color was completely disappeared in the presence of TiO2/AC catalyst, after 40 min of reaction time. However, only ozone system still existed 11.8% MB in aqueous solution, while in case of O3/AC system MB of 4.6% was not removed. In the COD removal experiment, the catalytic ozonation process showed a superior performance, compared to that of the conventional ozonation. COD removal efficiency was significantly promoted in the presence of catalysts such as AC and TiO2. O3/TiO2/AC was found to be the most effective approach to eliminating the color and enhancing COD removal efficiency. The catalyst of TiO2/AC was characterized by using transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS).  相似文献   

19.
This work aims to analyze the contribution of H2O2 on ozonation of Sulfamethoxazole (SMX). A single ozonation was able to totally remove SMX. TOC and COD depletion rates after a transferred ozone dose of 60 mg/L was related to the formation and decomposition of H2O2. An increase on O3 gas inlet concentration from 10 g/m3 to 20 g/m3 improved COD abatement from 11% to 36%. When the presence of H2O2 at the beginning of ozonation was tested, it was verified that COD and TOC degradation were enhanced, attaining maximum values of 76% and 32%, respectively, when compared with 35% and 15% reached in a single ozonation.  相似文献   

20.
Two methods based on the use of granular activated carbon (GAC) and ozone to remove organic compounds from water have been investigated. Both methods have been applied to degrade an aqueous solution of gallic acid and a secondary effluent from a wastewater treatment plant (WWTP). One of the methods, namely catalytic ozonation, implies simultaneous ozonation and adsorption onto GAC. This process takes advantage of the oxidizing power of ozone and the adsorption capacity of GAC but also of the catalytic transformation of ozone into secondary oxidants on the GAC surface. The efficiency of catalytic ozonation was compared to those of single adsorption and single ozonation. It was found that the catalytic process highly improves the conversion of total organic carbon (TOC) and makes a more efficient use of ozone than the single ozonation process. To illustrate the reusability of the catalyst, the GAC was reused four times through a series of consecutive experiments. No loss of catalytic activity was observed when treating the WWTP effluent but some deactivation could be appreciated when treating the aqueous solution of gallic acid. This deactivation could be attributed to some porosity destruction and surface oxidation produced as a result of reactions of aqueous ozone on the GAC surface. The other method investigated is an adsorption-regeneration process (namely GAC/O3-regeneration) that comprises two steps: dynamic adsorption onto GAC and further regeneration of the spent GAC with gaseous ozone. The adsorption stage of the GAC/O3-regeneration experiments was carried out in a continuous flow adsorption column and breakthrough curves were obtained. It was observed that the GAC used in this work adsorbed gallic acid very efficiently but exhibited limited capacity to remove chemical oxygen demand (COD) from the WWTP effluent. The optimum ozone dose to regenerate the spent GAC after gallic acid adsorption was found to be about 0.4 g O3/g GAC, with results showing around 90% regeneration efficiency. As a result of incomplete regeneration, the GAC adsorption capacity progressively decreased with the number of adsorption–regeneration cycles. The GAC/O3-regeneration method was not successful at treating the WWTP effluent as low adsorption uptake was observed. Moreover, the GAC became damaged after regeneration because of excessive oxidation of its surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号