首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidative efficiency of Ti(IV)-catalyzed H2O2/O3 (Ti(IV)/H2O2/O3) for acetic acid (HAc) degradation was investigated in the initial pH range of 1.0 to 6.0, and the effects of some common inorganic ions were also discussed in detail. The results showed that the effects of SO4 2? and NO3 ? on the efficiency of Ti(IV)/H2O2/O3 were negligible. However, adding Br? greatly reduced the removal rate of HAc. The presence of Cl? also reduced the efficiency of Ti(IV)/H2O2/O3, but its negative effect became negligible in the initial pH range of 4.5 to 5.5. The presence of H2PO4 ? could improve the removal rate of HAc, and addition of sodium carbonate had no influence on the efficiency of Ti(IV)/H2O2/O3 in the initial pH range of 4.5 to 5.5.  相似文献   

2.
In this study, enhanced ozonation of estriol (E3) with persulfate (PS) was investigated in aqueous solution. Simultaneous generation of hydroxyl radical (?OH) and sulfate radical (?SO4?) by O3/PS process was proposed and experimentally verified. Kinetic results revealed that the degradation of E3 was affected by the solution pH, PS concentration, O3 dosage and E3 initial concentration. The optimal reaction rate was observed in alkaline solutions. The mechanism for the synergistic effect was preliminarily explored by the addition of hydroxyl and sulfate radical scavengers. The enhanced degradation of E3 by O3/PS was also observed in actual water samples, which provided impetus for practical applications. The degradation intermediates were detected using LC/MS. Results showed that the phenol structures of the estrogens were mostly oxidized to cyclohexenone moieties and quinone-like structures.  相似文献   

3.
A useful ozone-based advanced oxidation process in acidic solution- Ti-MCM-41/H2O2/O3 was studied, and acetic acid (HAc) was selected to be degraded because it is a hydroxyl radical-probe compound in ozonation. The results showed that only Ti-MCM-41/H2O2/O3 could effectively degrade HAc at initial pH 3.0, and that other oxidative processes such as O3, H2O2/O3 Ti-MCM-41/O3 and MCM-41/H2O2/O3, all could not, indicating the coexistence of Ti-MCM-41 and H2O2 was necessary for the generation of hydroxyl radicals under the experimental conditions. The optimization of parameters indicated that the rate of generation of hydroxyl radicals could be regulated by the amount of Ti-MCM-41, and that the amount of hydroxyl radicals could be controlled by the concentration of H2O2. The preceding results are of significance for effective treatment of acidic refractory wastewater.  相似文献   

4.
Chemical oxygen demand (COD) removal rates of sulfosalicylic acid (SSal) degraded by three advanced oxidation processes (AOPs): O3/UV, O3/TiO2/UV and O3/V-O/TiO2 are compared in this paper. (V = Vanadium). The results show that O3/V-O/TiO2 is the most effective process among three AOPs and the order of degradation efficiencies at different pH values is shown as O3/V-O/TiO2 > O3/TiO2/UV > O3/UV. For example, at the buffered solution of pH 6.8, the COD removal rate of O3/V-O/TiO2 reaches 70% in 30 minutes, but those of O3/TiO2/UV and O3/UV are 55% and 47% at the same conditions, respectively. Furthermore, the effect of CO3 2 ?on the COD removal rates of three AOPs shows that O3/V-O/TiO2 and O3/TiO2/UV may be considerable promising methods to overcome the limitation of the presence of radical scavenger in solution. Both the adsorption of SSal on catalysts and other oxidants (atom oxygen, photo-generated hole) must be responsible for the above result.  相似文献   

5.
The aim of this research work is to study the influence of hydrogen peroxide and titanium dioxide in the ozone-based treatment to degrade 44 organic pesticides present in natural water, which are systematically detected in the Ebro River Basin (Spain). The studied pesticides are: alachlor, aldrin, ametryn, atrazine, chlorfenvinfos, chlorpyrifos, pp'-DDD, op'-DDE, op'-DDT. pp'-DDT, desethylatrazine, 3,4-dichloroaniline, 4,4'-dichlorobenzophenone, dicofol, dieldrin, dimethoate, diuron, α-endosulphan, endosulphan-sulphate, endrin, α-HCH, β-HCH, γ-HCH, δ-HCH, heptachlor, heptachlor epoxide A, heptachlor epoxide B, hexachlorobenzene, isodrin, 4-isopropylaniline, isoproturon, metholachlor, methoxychlor, molinate, parathion methyl, parathion ethyl, prometon, prometryn, propazine, simazine, terbuthylazine, terbutryn, tetradifon and trifluralin. The ozonation using 3 mg O3 L?1 produces a pesticides removal close to 23%, whereas the application of O3/H2O2 and O3/TiO2 treatments achieves average degradation yields lower than the ozonation. However, the application of O3/H2O2 /TiO2 process improves considerably the pesticides degradation and an average degradation yield of 36% is obtained.  相似文献   

6.
The purpose of this research is to evaluate the bactericidal capacity of different Advanced Oxidation Treatments (AOTs) based on ozone: ozone, ozone/hydrogen peroxide and ozone/titanium dioxide on a wild strain of Clostridium perfringens, a fecal bacterial indicator in drinking water. The dose of ozone consumed ranges from 0.6 mg L?1 min?1 to 5.13 mg L?1 min?1 depending on the process and on the sample. In the treatments combined with O3, H2O2 dose utilized is 0.04 mM and TiO2 dose, 1 g L?1. In order to evaluate the influence of natural organic matter and suspension solids over the disinfection rate, treatments are performed with two types of water – natural water from Ebro River (Zaragoza, Spain) and NaCl solution 0.9%. To achieve 4 log units of inactivation, 3.6 mg O3 L?1 is necessary in O3 treatment, 4.25 mg O3 L?1 in O3/TiO2 system and 2.7 mg O3 L?1 in O3/H2O2 after processing the natural water. In NaCl solution, to get the same inactivation, 0.42 mg O3 L?1 is necessary in O3 treatment, 1.15 mg O3 L?1 in O3/TiO2 system and 0.06 mg O3 L?1 in O3/H2O2 process. Even though the three treatments studied have a high bactericidal activity due to the number of surviving bacteria decreases to non-detectable levels, O3/H2O2 is the most effective system for eliminating C. perfringens cells in a lower contact time, followed by O3 and finally O3/TiO2 system.  相似文献   

7.
The degradation of 1,4-dioxane was investigated on a laboratory scale. The extents of degradation and/or removal of 1,4-dioxane by ozonation at pH 6–8, UV irradiation, aeration, and addition of H2O2 were very limited. On the other hand, the degradation of 1,4-dioxane by O3/UV and O3/H2O2 was accelerated compared with the above respective methods. The amounts of 1,4-dioxane degraded per amount of ozone consumed in O3/UV and O3/H2O2 were also higher than in ozonation. The amount of 1,4-dioxane degraded in O3/UV was affected by the intensity of UV irradiation, and that in O3/H2O2 was affected by the amount of H2O2 added only in the case of a high initial concentration of 1,4-dioxane.  相似文献   

8.
Kinetics of competition between the ozone direct reaction with compounds in water, ozone-hydroperoxide ion reaction leading to free radicals in the O3/H2O2 process, and the photolysis of ozone in the O3/UV process are discussed in terms of diffusion and reaction times to establish conditions for these reactions to be competitive. Film theory and chemical kinetic concepts then are applied to estimate initial rates of ozone absorption and consumption, removal rates of compounds present in water, and the importance of the radical oxidation path versus direct ozone and/or photolysis reactions.  相似文献   

9.
This paper studies the decomposition of formic, oxalic and maleic acids by O3, O3/catalyst, and O3/H2O2. The catalytic effect of Co2+, Ni2+, Cu2+, Mn2+, Zn2+, Cr3+, and Fe2+ ions is investigated. The results showed that—Co2+ and Mn2+ have the highest catalytic activity for the decomposition of oxalic acid while the catalytic effect of the studied ions is insignificant on the rate of decomposition of formic acid. Maleic acid decomposes by ozone into formic acid and glyoxylic acid, which subsequently oxidizes to oxalic acid. Though the studied ions have no effect on the decomposition of maleic acid, they have a significant effect on the produced oxalic and glyoxylic acids. In the presence of Cu2+ ions glyoxylic acid is mainly transformed into formic acid and traces of oxalic acid. In such case, a complete decomposition of maleic acid and its degradation products is achieved within 45 min. The results also show that combining H2O2 with O3 results in an increase in the rate of decomposition of oxalic acid. However, O3/H2O2 system is less active than O3/Co2+ or O3/Mn2+.  相似文献   

10.
This article presents experimental investigation on the oxidative treatment of phenol in water by O3/H2O2 in a rotating packed bed (RPB). It was found that the phenol degradation ratio increased with increasing rotation speed, initial pH value of phenol solution, and temperature. The degradation ratio of phenol had a peak value with increasing H2O2 concentration. The optimum operating conditions in this study were determined as an H2O2 concentration of 6.5 mM and a rotation speed of 1200 rpm. Phenol degradation ratio reached 100% at an initial phenol concentration of 40 mg/L in the O3/H2O2 process.  相似文献   

11.
CATAZONE is a new process of heterogeneous catalytic ozonation in which water is ozonated in the presence of a solid catalyst composed of titanium dioxide. The efficiency of this O3/TiO2 system has been compared to the two well-known oxidant systems: ozone alone and ozone combined with hydrogen peroxide.

This comparison was undertaken on three models of natural organic compounds : an aquatic fulvic acid, a protein and a disaccharide. The first results showed the following order of relative efficiency: O3/TiO2 > O3/H2O2 > O3 as far as Total Organic Carbon (TOC) removal was concerned.  相似文献   


12.
The influence of carbonate on the ozone/hydrogen peroxide process has been investigated. Carbonate radicals, which are formed from the reaction of bicarbonate/carbonate with OH radicals, act as a chain carrier for ozone decomposition due to their reaction with hydrogen peroxide. The efficiency of bicarbonate/carbonate as a promoter for the radical-based chain reaction in presence of hydrogen peroxide has been calibrated and compared to a well-known chain promoter (methanol) and an inhibitor (tert-butanol). Relative to tert-butanol, the hydrogen peroxide induced ozone decomposition is accelerated by bicarbonate/carbonate. Relative to methanol, bicarbonate/carbonate in presence of hydrogen peroxide is less effective as a promoter under comparable experimental conditions.  相似文献   

13.
The destruction of methyl-tert-butyl ether (MTBE) in contaminated waters by O3/H202 process was studied and the influence background COD, alkalinity, and hydrogen peroxide and MTBE concentrations on process treatment efficiency and ozone dosage was investigated. The treatment efficiency was evaluated by an Efficiency Index, which is based on electrical energy requirement for ozone production. It was found that the treatment efficiency decreases linearly with increasing concentrations of MTBE at constant background COD and with background COD at constant MTBE concentration. A simplified kinetic scheme was presented to account for these observations.  相似文献   

14.
The aim of this work is to study the reaction of ozone and combined ozone/hydrogen peroxide mixtures with the fluorescent brightener 28 in dilute aqueous solution using controlled experimental conditions. The kinetics were also evaluated under various experimental conditions. The main ozonation by-products have been identified by High Pressure Anionic Exchange Chromatography (HPAEC) and Gas Chromatography coupled with Mass Spectrometry (GC-MS) techniques and a reaction pathway is proposed. In order to confirm this mechanism, melamine and s-triazine have been treated under the same reaction conditions and their decomposition pathways were studied.  相似文献   

15.
The authors monitored hydrogen peroxide (H2O2), ozone (O3), and apparent hydroxyl radical (OH·) concentrations in the liquid phase, along with gas phase ozone when operating an advanced oxidation (AO) system that included H2O2, O3, sonication, and underwater plasma (UWAP). The OH· radical converted non-fluorescent terephthalic acid to fluorescent hydroxyterephthalic acid (HTA). As determined from HTA formation, when a 500 ppm H2O2 dose in tap water was combined with O3 and sonication, nearly twice as much OH· (0.72 ppm) accumulated than with H2O2 alone. When UWAP accompanied H2O2, O3, and sonication, these together generated 15–35% more OH· than when UWAP was excluded. When ozone was introduced into this AO system, the AO system decomposed almost all the O3. This research has been conducted as a part of a study that has appraised this advanced oxidation system (Sonoperoxone) in green sand foundries, where it has diminished volatile organic compound (VOC) and hazardous air pollutant (HAP) emissions by 20–75%; and clay and coal consumption by 20–35%.  相似文献   

16.
Acid Black 210 (AB-210) dye is one of the most black dyes used by the leather industry. In the present work, AB-210 degradation in aqueous solution by ozonation (O3) and ozonation with ultraviolet (UV) radiation (O3/UV) was investigated. The effects of pH, initial dye concentration and UV radiation were studied in laboratory scale. Removal was evaluated in terms of residual AB-210 concentration in the treated solution and mineralization efficiency was evaluated by total organic carbon (TOC) analysis. The results indicated that AB-210 is quickly degraded after 15 min but not totally mineralized. It was observed that dye removal of 100% was achieved at pH 3, 7, and 11, while mineralization was found to increase with the pH (55% at pH 11). Concerning UV-C radiation, it enhanced AB-210 degradation at pH 3 but did not reveal any significant effect at pH 7 and 11.  相似文献   

17.
The effect of UV radiation on the removal of formic, oxalic and maleic acids from water by metallic ion (Fe2+ or Cu2+)/H2O2 and metallic ion/O3 was studied and compared. The results showed that metallic ion/O3/UV has higher efficiency than metallic ion/H2O2/UV for oxalic acid removal. UV radiation significantly increases the efficiency of metallic ion/H2O2 for formic and maleic acids removal while its effect on the efficiency of metallic ion/O3 for formic acid removal is minor. However, at pH 2, O3 alone showed higher efficiency than metallic ion/H2O2/UV for formic acid removal. Contrary to the relative efficiency of metallic ions in the previous systems, Cu2+ exhibited higher rate than Fe2+ for the removal of the degradation products of maleic acid by O3. UV radiation exhibited a minor effect on the efficiency of Cu2+/O3, while it exhibited a large effect on the efficiency of Fe2+/O3 for the removal of the degradation products of maleic acid.  相似文献   

18.
Heterogeneous catalytic ozonation was investigated for the degradation of nitrobenzene in the presence of TiO2 supported on Silica-gel as a solid catalyst. The conditions in preparing the catalyst are experimentally optimized. The catalytic activity of the supported TiO2 is strongly influenced by the calcination temperature. The TiO2/Silica-gel calcined at 500 °C showed the highest activity for the degradation of nitrobenzene. An approximate increase of 21% in removal efficiency was achieved for catalytic ozonation compared with the case of ozonation alone. Nitrobenzene degradation was significantly influenced by the presence of carbonate and t-butanol, which confirmed that TiO2/Silica-gel catalyzed ozonation followed a radical-type mechanism. Kinetic study demonstrated that catalytic ozonation is pseudo–first-order with no respect to the initial nitrobenzene concentration. The effect of catalyst dosage and pH on the oxidation efficiency of nitrobenzene was also investigated. Catalyst dosage exerted a positive influence on nitrobenzene removal, and nitrobenzene degraded more completely under neutral or basic conditions. Finally, the catalyst stability was tested through repeated experiments.  相似文献   

19.
Photocatalytic ozonation of organics under simulated solar irradiation with a g-C3N4 nanosheet was investigated. g-C3N4 was prepared by calcinations of urea and characterized by TEM, BET, XRD and UV-Vis. Oxalic acid and bisphenol A were used as model substances to evaluate its catalytic ability. The results showed that g-C3N4 possess 2D nanosheet structure. The degradation ratio of oxalic acid and bisphenol A with g-C3N4/O3/Solar was 1.50 and 1.92 times as great as the sum ratio when it was individually degraded by g-C3N4/Solar and O3, separately. The results of recycling experiment indicated that g-C3N4 catalyst is very stable under experimental conditions.  相似文献   

20.
The performance of the O3, O3/UV and UV/H2O2 processes for degradation of six chlorophenols (4-chlorophenol, 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol and pentachlorophenol) were studied in laboratory reactors. Comparative study showed that chlorophenols can be degraded successfully by all of the methods studied, whilst traditional ozonation at high pH was determined to be the most effective method to treat chlorophenols. Even though the molar absorptivity of chlorophenols is known to be relatively high in the UV-region, the combination of UV-radiation with ozone did not accelerate the degradation of chlorophenols further. The toxicity of degradation products formed during ozonation of chlorophenols has been compared with the toxicity of pure chlorophenols utilizing Daphnia magna 24 hours test. Ozonation of chlorophenols yielded less toxic or even nontoxic products for Daphnia magna compared with parent compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号