首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determined the moisture levels, relative humidity (RH) or moisture content (MC) of materials, and concentrations of culturable fungi, actinomycetes and total spores as well as a composition of fungal flora in 122 building material samples collected from 18 moisture problem buildings. The purpose of this work was to clarify if the is any correlation between the moisture parameters and microbial levels or generic composition depending on the type of materials and the time passed after a water damage. The results showed an agreement between the concentrations of total spores and culturable fungi for the wood, wood-based and gypsum board samples (r > 0.47). The concentrations of total spores and/or culturable fungi correlated with RH of materials particularly among the wood and insulation materials (r > 0.79), but not usually with MC (r < 0.45). For the samples collected from ongoing damage, there was a correlation between RH of materials and the concentrations of total spores and culturable fungi (r > 0.51), while such a relationship could not be observed for the samples taken from dry damage. A wide range of fungal species were found in the samples from ongoing damage, whereas Penicillia and in some cases yeasts dominated the fungal flora in the dry samples. This study indicates that fungal contamination can be evaluated on the basis of moisture measurements of constructions in ongoing damage, but the measurements are not solely adequate for estimation of possible microbial growth in dry damage.  相似文献   

2.
Indoor microbial communities vary in composition and diversity depending on material type, moisture levels, and occupancy. In this study, we integrated bacterial cell counting, fungal biomass estimation, and fluorescence-assisted cell sorting (FACS) with amplicon sequencing of bacterial (16S rRNA) and fungal (ITS) communities to investigate the influence of wetting on medium density fiberboard (MDF) and gypsum wallboard. Surface samples were collected longitudinally from wetted materials maintained at high relative humidity (~95%). Bacterial and fungal growth patterns were strongly time-dependent and material-specific. Fungal growth phenotypes differed between materials: spores dominated MDF surfaces while fungi transitioned from spores to hyphae on gypsum. FACS confirmed that most of the bacterial cells were intact (viable) on both materials over the course of the study. Integrated cell count and biomass data (quantitative profiling) revealed that small changes in relative abundance often resulted from large changes in absolute abundance, while negative correlations in relative abundances were explained by rapid growth of only one group of bacteria or fungi. Comparisons of bacterial-bacterial and fungal-bacterial networks suggested a top-down control of fungi on bacterial growth, possibly via antibiotic production. In conclusion, quantitative profiling provides novel insights into microbial growth dynamics on building materials with potential implications for human health.  相似文献   

3.
Residential highrise building fire of height above 200 m is now a concern in the Far East. Long-term survey study on fire load density indicated that high amount of combustibles over the local upper limit of 1135 M Jm−2 used to be stored in residential flats. Wind-induced air-flow rates through openings at upper levels of those tall buildings can be very high. Stack effect in areas with large indoor and outdoor temperature differences (such as 14 °C indoor and − 30 °C outdoor at Harbin, Heilongjiang, China) will also give high ventilation rate through leakage areas. Adequate oxygen is then supplied to burn up all stored combustibles to give a big fire. In applying performance-based design to determine the fire safety provisions, heat release rate of the design fire is the first parameter to decide. In this paper, stack effect and wind action on possible increase in the heat release rate for fires in supertall residential buildings will be explored. Air intake rates through openings to rooms at high levels due to stack effect and wind action are estimated by simple empirical formula. The maximum heat release rates for well-developed room fires in these tall buildings under different stack and wind conditions are determined by varying two parameters. Air flow rate through openings in an 800 m tall building induced by wind gust can be over 20 times the value at ground level. Consequently, heat release rate can be much higher, confirming experimental studies on building fires under wind action.  相似文献   

4.
某工程地下2层、地上12层,为框架剪力墙结构.于2008年1月发生火灾,过火面积约60 000m2,火灾持续时间约60h,火灾后立即进行了检测鉴定及加固修复处理,8层以上由于损坏严重,需要拆除重建,7层以下采取整体加固的处理方法.通过现场检测,对结构构件的受损程度及结构安全性进行分级,对不同等级的受损构件提出相应的修复加固措施.  相似文献   

5.
薛倩  常杰飞 《建筑节能》2005,33(1):40-42
中铝大厦是主楼为26层高的现代化办公建筑楼群。介绍该工程的负荷计算、气流组织、空调通风方式、空调水系统、防排烟、冷热源及空调自控系统,并结合设计、施工过程中出现的问题提出改进建议。  相似文献   

6.
Gypsum wallboard is a popular building material, but is also very frequently overgrown by Stachybotrys chartarum after severe and/or undetected water damage. The purpose of this study was to determine whether Stachybotrys and other fungi frequently isolated from wet gypsum wallboard are already present in the panels directly from the factory. Surface‐disinfected gypsum disks were wetted with sterile water, sealed, and incubated for 70 days. The results showed that Neosartorya hiratsukae (≡ Aspergillus hiratsukae) was the most dominant fungus on the gypsum wallboard followed by Chaetomium globosum and Stachybotrys chartarum. Our results suggest that these three fungal species are already embedded in the materials, presumably in the paper/carton layer surrounding the gypsum core, before the panels reach the retailers/building site.  相似文献   

7.
选取某高层写字楼进行实例研究,利用PyroSim进行火灾模拟,计算25层走廊着火时的可用安全疏散时间,运用Pathfinder建立人员紧急疏散模型,分析混合疏散策略对疏散效率的影响。结果表明:相比温度、CO体积分数,能见度到达人员安全疏散界限的时间更短。25层走廊着火时,最不利条件下着火层可用安全疏散时间为319.1 s。楼梯疏散、楼梯电梯混合疏散所需安全疏散时间分别为526.3、427.9 s,均不满足安全疏散条件。楼梯、电梯及避难层混合疏散所需安全疏散时间为294.2 s。楼梯、楼梯电梯混合疏散整栋楼分别用时2 618、2 289 s。楼梯、电梯与避难层混合疏散整栋楼用时1 796 s。因此,高层建筑火灾时,楼梯、电梯与避难层混合疏散效率更高,更安全。研究结果为制定高层写字楼火灾应急疏散预案提供依据。  相似文献   

8.
We examined the effects of remediation on loads of culturable fungi in floor dust collected from a large water-damaged office building during four cross-sectional surveys (2002, 2004, 2005, and 2007, respectively). We created a binary remediation variable for each year for each sampled workstation using information on remediation associated with water damage obtained from building management and used generalized linear mixed-effects models. We found significantly lower levels of culturable total and hydrophilic fungi at remediated workstations than at non-remediated workstations in 2004 and 2005 after completion of major remediation. The remediation effect, however, disappeared in 2007. The fraction of hydrophilic to total fungal concentrations was lowest in 2004, increased in 2005, and was highest in 2007. Our results indicate that the 2003 remediation lowered dust indices of dampness temporarily, but remediation was incomplete, consistent with a building assessment report of water infiltration. This study demonstrates the utility of longitudinal evaluation of microbial indices during remediation of water damage in this building, in which elimination of sources of moisture was not fully addressed. Our findings indicate that the fraction of hydrophilic fungi derived from concentrations of fungal species may be a useful index for assessing the long-term effectiveness of remediation. PRACTICAL IMPLICATIONS: This study demonstrates the utility of longitudinal evaluation of microbial indices during remediation of water damage in this building, in which elimination of sources of moisture was incomplete. Our findings indicate that the fraction of hydrophilic fungi derived from concentrations of fungal species may be a useful index for assessing the long-term effectiveness of remediation.  相似文献   

9.
The fire which spread over the top six floors of the 54 m tall building of the Open University in Novi Sad, caused severe damage to the load-bearing reinforced (RC) concrete structure and the steel facade structure. This paper presents the recorded data on the damage and the assessment of the structure after the fire. All the damage is described and the most characteristic ones are illustrated with photographs. The damages caused by the fire have been classified according to the criteria of the manner and degree to which they are manifested. The authors separate and describe the defects, which occurred as a result of errors made during the construction of the building. The results of the subsequent testing of the quality of the built-in materials are also presented in the paper. It has been concluded that the damage of the elements of the load-bearing RC structure from the 8th to the 12th floor has been so severe that the stability and bearing capacity of this part of the structure has been jeopardized, but with appropriate repair measures it can be restored to its previous condition.  相似文献   

10.
Abe K 《Indoor air》2012,22(3):173-185
Previously, the author proposed a 'fungal index' that quantifies the capacity for fungal growth in a test environment where a device (fungal detector) encapsulating spores of a xerophilic sensor fungus Eurotium herbariorum was placed. It was also found that an extremely xerophilic fungus, Aspergillus penicillioides, was suitable as a sensor fungus at sites with lower relative humidity (RH). In this report, the hydrophilic fungus Alternaria alternata was added to sensor fungi for the determination of the index in extremely humid environments. Measurements of the index and observations of the formation of spores by the sensor fungi were made in stable climates in moisture chambers, under natural conditions in homes, and in bathrooms prepared in an artificial climate chamber. Higher index values and earlier sporulation were obtained at higher RH in stable climates. The hydrophilic Alt. alternata showed the greatest response at 100% and 97.3% RH, the moderately xerophilic Eur. herbariorum, at 94%, 84%, and 75% RH, and the extremely xerophilic Asp. penicillioides, at 71% RH. In homes, the hydrophilic fungus was most active in water-usage areas, and the xerophilic fungi were most active in non-water-usage areas. Sporulation was observed on sensor fungi in fungal detectors placed in rooms where the index exceeded 18 ru/week after one-month exposure. Sites where the index exceeded 18 ru/week were referred to as damp, where fungal contamination seems to be unavoidable. Evaluations of ventilation systems in bathrooms with extremely humid climates showed typical examples of a countermeasure to fungal contamination. PRACTICAL IMPLICATIONS: The purpose of this study is to establish a fungal index applicable in home environments with extremely high to relatively low relative humidity climates. The sensor fungus that showed the greatest response in a fungal detector (a device encapsulating spores of sensor fungi) served as not only a quantitative but also a qualitative indicator of the environment tested, indicating the type of fungi that would contaminate the site. A fungal index would be a good tool for detecting dampness that induces fungal contamination, which has adverse effects on human health. Evaluations of indoor climates would provide information useful to building owners, builders, designers, advisers, medical practitioners, and so on. Selection of the most suitable insulation systems in various buildings under different climates or evaluations of the drying process in water-damaged buildings could also be possible using fungal detectors and measurements of fungal indices.  相似文献   

11.
The release and transport of fungal spores from water-damaged building materials is a key factor for understanding the exposure to particles of fungal origin as a possible cause of adverse health effects associated to growth of fungi indoors. In this study, the release of spores from nine species of typical indoor fungi has been measured under controlled conditions. The fungi were cultivated for a period of 4-6 weeks on sterilized wet wallpapered gypsum boards at a relative humidity (RH) of approximately 97%. A specially designed small chamber (P-FLEC) was placed on the gypsum board. The release of fungal spores was induced by well-defined jets of air impacting from rotating nozzles. The spores and other particles released from the surface were transported by the air flowing from the chamber through a top outlet to a particle counter and sizer. For two of the fungi (Penicillium chrysogenum and Trichoderma harzianum), the number of spores produced on the gypsum board and subsequently released was quantified. Also the relationship between air velocities from 0.3 to 3 m/s over the surface and spore release has been measured. The method was found to give very reproducible results for each fungal isolate, whereas the spore release is very different for different fungi under identical conditions. Also, the relationship between air velocity and spore release depends on the fungus. For some fungi a significant number of particles smaller than the spore size were released. The method applied in the study may also be useful for field studies and for generation of spores for exposure studies.  相似文献   

12.
卢科锋 《山西建筑》2011,37(6):104-105
介绍了某超高层写字楼消防给水系统设计,并强调了超高层建筑消防给水系统设计应重点考虑系统分区、系统减压、转输水箱和水泵等几个问题,以期确保消防给水安全、可靠。  相似文献   

13.
The information on airborne allergenic fungal flora in rural agricultural areas is largely lacking. Adequate information is not available to the bioaerosol researchers regarding the choice of single versus multiple sampling stations for the monitoring of both viable and non-viable airborne fungi. There is no long-term study estimating the ratios of viable and non-viable fungi in the air and earlier studies did not focus on the fractions of airborne allergenic fungi with respect to the total airborne fungal load. To fill these knowledge gaps, volumetric paired assessments of airborne viable and non-viable fungi were performed in five outdoor sampling stations during two consecutive years in a rural agricultural area of India. Samples were collected at 10-day intervals by the Burkard Personal Slide Sampler and the Andersen Two-Stage Viable Sampler. The data on the concentrations of total and individual fungal types from five stations and 2 different years were analyzed and compared by statistical methods. The allergenicity of the prevalent airborne viable fungi was estimated by the skin-prick tests of >100 rural allergy patients using the antigenic fungal extracts from isolates collected with the Andersen sampler. The ranges of total fungal spore concentration were 82-2365 spores per cubic meter of air (spores/m3) in the first sampling year and 156-2022 spores/m3 in the second sampling year. The concentration ranges of viable fungi were 72-1796 colony-forming units per cubic meter of air (CFU/m3) in the first sampling year and 155-1256 CFU/m3 in the second sampling year. No statistically significant difference was observed between the total spore data of the 2 years, however, the data between five stations showed a significant difference (P<0.0001). No statistically significant difference existed between stations and years with respect to the concentration of viable fungi. When the data of individual allergenic fungal concentrations were compared between stations and years, no statistically significant difference was observed in all cases except for Aspergillus japonicus and Rhizopus nigricans, which showed significant difference in case of stations and years, respectively. The ratios between the total fungal spores collected by the Burkard sampler and the viable fungi collected by the Andersen sampler from all sampling stations ranged between 0.29 and 7.61. The antigenic extracts of eight prevalent viable airborne fungi (A. flavus, A. japonicus, A. fumigatus, Alternaria alternata, Cladosporium cladosporioides, Curvularia pallescens, Fusarium roseum, and R. nigricans) demonstrated >60% positive reactions in the skin prick test. These selected allergenic fungi collectively represented 31.7-63.2% of the total airborne viable fungi in different stations. The study concluded that: (i) a rich fungal airspora existed in the rural study area, (ii) to achieve representative information on the total airborne fungal spores of an area, the monitoring in multiple sampling stations is preferable over a single sampling station; for viable fungi, however, one station can be considered, (iii) the percentage of airborne fungal viability is higher in rural agricultural areas, and (iv) approximately 52% of the viable airborne fungi in the rural study area were allergenic.  相似文献   

14.
The National Institute of Standards and Technology (NIST) conducted an extensive investigation of the collapse of World Trade Center towers (WTC 1 and WTC 2) and the WTC 7 building. This paper describes the reconstruction of impact damage to each of the WTC buildings, as well as analytical studies related to the WTC building collapses. In addition, data and evidence that were collected, tests of the floor truss systems in the WTC towers that were conducted, the overall structural analysis approach, and the development of the collapse hypotheses are discussed to provide a basis for the impact analyses and the fire and structural response analyses in a companion paper. Three companion papers address the primary structural systems of the WTC towers and WTC 7, the effects of fire on the three buildings, and how these events contributed to building collapse. The papers provide an overview of the complex and extensive investigations undertaken by NIST at a level of detail that has scientific merit but presents key aspects from the voluminous official reports at a level suitable for the technical literature. The aircraft impact damage to structural members and their passive fire protection in WTC 1 and 2 were estimated through detailed aircraft impact simulations. The impact damage to WTC 7 was estimated from photographs after the collapse of WTC 1, where falling debris damaged the southwest corner of WTC 7. Based on the aircraft impact simulation, over half of the exterior columns on the north face of WTC 1 were severed and approximately 20% of the core columns were severed or heavily damaged. Spray-applied fire resistive material (SFRM) was dislodged by direct debris impact over five floors (Floors 94 to 98). WTC 2 structural damage was concentrated on the east side of the building. Over half of the exterior columns on the south face were severed and approximately 25% of the core columns were severed or heavily damaged. SFRM was dislodged by direct debris impact over six floors (Floors 78 to 83). WTC 7 was structurally damaged by debris from the collapse of WTC 1. Photographic evidence showed that seven exterior columns were severed near the southwest corner at the lower floors. Unlike the towers, the SFRM in WTC 7 likely remained intact except for local areas around the debris impact damage at the southwest corner. All three buildings were stable with the impact damage, but the WTC 2 building section above the aircraft impact damage leaned to the east and south.  相似文献   

15.
Abstract Residential microbial exposure has been suggested to be involved in the development of asthma. This paper describes bacterial endotoxin and mold β(1→3)-glucan levels in house dust and the relationship to selected home characteristics. Dust was sampled from mattresses and living room and bedroom floors of 25 houses in Germany. Endotoxin and β(1→3)-glucan levels ranged from 200-48,600 EU/g dust (100-32,900 EU/m2 sampled surface) and 182-3,507 μg/g (157-3,652 μg/m2), respectively. Bio-contaminant levels were highest on living room floors and lowest in mattresses. Dust, endotoxin and β(1→3)-glucan levels were 2–3 times higher on living room floors of centrally heated houses built after 1970 compared to older individually heated houses. This was not found for mattresses and bedroom floors. No associations between biocontaminant levels and other selected home characteristics (temperature, relative humidity, damp spots and insulation of windows) were found. β(1→3)-glucan levels were associated with total culturable fungi (per m2) in house dust, as well as with the fungal genus Alternaria (per g dust and per m2). In conclusion endotoxin and β(1→3)-glucan were readily detectable in house dust and significantly associated with heating system and/or age of the home.  相似文献   

16.
为保证高层建筑在火灾中举高车的顺利使用,对高层建筑的消防登高面和作业场地消防设计审核提出要求。  相似文献   

17.
高层建筑高位水箱是高层建筑生活给水和消防给水设计中的重要环节。对高位水箱设置的必要性,高位水箱的容积、高位水箱坑度进行了研究和探讨 。  相似文献   

18.
通过对深业中心的比较分析,指出在深圳等冬季不需供暖的地方,高层办公楼的玻璃幕墙采用单层比双层合算,而且采用镀膜热反射玻璃等手段亦可实现空调节能。  相似文献   

19.
In August 2009, the historic Typhoon Morakot brought extreme rainfall and resulted in flooding which spread throughout southern Taiwan. This study compared the difference between fungal concentrations before and after the disaster in selected homes of the Tainan metropolitan area, which were hit hardest by the catastrophe. A group of 83 households available from a prior cohort established with random sampling out of a regional population in southern Taiwan was contacted successfully by telephone. Twenty-five of these reported to have suffered from floods of various degrees at this time. Around 2 weeks after the event, at which time most of the remedial process had been completed by self-efforts and public health endeavours, 14 of these 25 (56%) agreed to participate in measurements of the airborne microbial concentrations. The averages (standard deviation) of the total culturable fungal concentrations in children's bedrooms and flooded rooms were 18,181 (25,854) colony-forming units per cubic metre (CFU/m3) and 13,440 (11,033) CFU/m3, respectively. The airborne fungal spore levels in the 2 above-mentioned indoor sites were 221,536 (169,640) spores/m3 and 201,582 (137,091) spores/m3, respectively. The average indoor/outdoor ratios in the children's bedrooms were 4.2 for culturable fungi and 1.4 for fungal spores. These values were higher than the respective values measured in the same homes during the previous year: 1.1 and 0.6. In terms of the specific fungal profile, the percentages of Aspergillus spp. increased significantly in both the indoor and outdoor environments after the event. To this date, this study is among the limited research that has been conducted to quantitatively demonstrate that fungal manifestation is likely to persist in flooded homes even after seemingly robust remedial measures have been put into place. Studies to examine the potential health implications and effectiveness of better remedial technology remain much needed.  相似文献   

20.
Abstract Fungal spore content in dust accumulated in air ducts was investigated in 24 mechanically ventilated single-family houses of which 15 had also a central air heating system. Dust was collected from the ducts simultaneously with cleaning of the ventilation systems. Besides spore concentrations and flora of culturable fungi, total fungal spore concentrations were determined in dust samples by the aqueous two-phase technique and spore counting with epifluorescence microscopy. Culturable spore concentrations in the dust varied from 104 to 107 CFU/g and total spore concentrations from 107 to 108 spores/g. Total spore concentrations in the duct dust were significantly higher in the air heated houses than in the other mechanically ventilated houses. The difference resulted mainly from a higher proportion of recirculation air and a higher age of the air heated houses. Cladosporium, Penicillium, Aspergillus and yeasts consisted of >90% of fungal flora in the dust. Although total spore concentrations were at the same level both in the exhaust and in the supply ducts in both types of house, culturable fungal spore concentrations were slightly higher in the exhaust ducts than in the supply ducts. The proportion of culturable spores was <5% of total spores in dust accumulated in the ducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号