首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impact-toughened, compatibilized binary blends of styrene-maleic anhydride (SMA) copolymer/amine functionalized ethylene-propylene (amine-EP) polymer and ternary blends consisting of SMA/amine-EP/high density polyethylene (HDPE) are described. In both blends 0.02 to 4 μm range rubbery inclusions, which toughen the SMA matrix, are formed. SMA sub-inclusions exist in the amine-EP phase. In the ternary blend substantially all of the polyethylene is embedded in the EP phase. Compatibilization of the SMA and the commingled polyolefin phase is promoted by a graft copolymer formed by the reaction of amine groups on the EP with the maleic anhydride groups on the SMA. We describe the morphology, rheology, aging characteristics and impact properties of these blends. SMA modification by SMA-g-(amine-EP) polymers formed in situ in the melt, with HDPE, has not been previously reported.  相似文献   

2.
In the present study, ethylene/vinyl alcohol (EVAL) copolymers with different hydroxyl contents were melt mixed with styrene/maleic anhydride (SMA) copolymers. These two copolymers have functional groups capable of reacting intermolecularly, giving stable products. All EVAL copolymers were prepared from the same ethylene/vinyl acetate (EVA) copolymer by controlled hydrolysis. The blends, prepared at constant temperature and rotation speed in the rheomixer, were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermo-gravimetric analysis, as well as mechanical properties and extraction experiments. All the above measurements lead to the conclusion that a certain part of hydroxyls of EVAL have reacted with anhydride groups of SMA, leading to the formation of branched and cross-linked products. The effect of (1) the molar ratio of hydroxyl/maleic anhydride functional groups, (2) the overall concentration of the functional groups, and (3) the mixing time on the structure and properties of the blends are discussed. Emphasis is given on the influence of these factors on the tensile strength, the elongation at break, and impact strength of the products. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 983–999, 1997  相似文献   

3.
This study investigated the effect of blending poly(styrene-co-maleic anhydride) (SMA) on the mechanical and thermal properties of nylon-6/polyether block amide (PEBA) blend. In these blends, nylon-6 was toughened with PEBA using SMA as the compatibilizer. All the blends were prepared via direct melt compounding using a co-rotating twin screw extruder. The amount of PEBA added affected the crystallization characteristics and the relative ratio of γ and α crystalline phases of Nylon 6. The crystallization rate of Nylon 6 was also affected by the cooling rate and the amount of PEBA added. The results of mechanical tests showed that the tensile properties, flexural properties, and impact strengths of the nylon-6/PEBA were all increased when blended with 1 wt% of SMA, at both 23 and ?20 °C. However, for neat nylon-6, the impact strength was not affected despite that both tensile and flexural properties were increased by the blending of SMA. The results indicated that SMA can increase the compatibility between nylon-6 and PEBA, thus expanding the usage of nylon-6/PEBA blend in low-temperature applications.  相似文献   

4.
G. Defieuw  G. Groeninckx  H. Reynaers 《Polymer》1989,30(12):2158-2163
Blends of polycaprolactone (PCL) and random copolymers of styrene and maleic anhydride (SMA) with different maleic anhydride contents were prepared by the coprecipitation technique. The miscibility of both polymers in the melt and in the solid state was studied by means of optical microscopy, light transmission measurements and dynamic mechanical analysis. The crystallization behaviour of PCL in the miscible blends was examined using optical microscopy and the morphology of the semicrystalline PCL/SMA blends was investigated by means of small-angle X-ray diffraction measurements. Their melting behaviour was studied by differential scanning calorimetry. SMA containing 14 and 25 wt% MA was found to be miscible with PCL over the entire composition and temperature range (up to 200°C). SMA appears to segregate interlamellarly during the isothermal crystallization of PCL. The double melting behaviour of PCL in the blends was attributed to a secondary crystallization process and not to a partial melting-recrystallization-remelting process.  相似文献   

5.
The effect of simultaneous addition of multiwall carbon nanotubes (MWNTs) and a reactive compatibilizer (styrene maleic anhydride copolymer, SMA) during melt‐mixing on the phase morphology of 80/20 (wt/wt) PA6/ABS blend has been investigated. Morphological analysis through scanning and transmission electron microscopic analysis revealed finer morphology of the blends in presence of SMA + MWNTs. Fourier transform infrared spectroscopic analysis indicated the formation of imide bonds during melt‐mixing. Non‐isothermal crystallization studies exhibited the presence of a majority faction of MWNTs in the PA6 phase of 80/20 (wt/wt) PA6/ABS blend in presence of SMA + MWNTs. Rheological analysis, dynamic mechanical thermal analysis, and thermogravimetric analysis have demonstrated the compatibilization action of simultaneous addition of a reactive compatibilizer (SMA copolymer) and MWNTs in PA6/ABS blends. An attempt has been made to investigate the role of simultaneous addition of SMA copolymer and MWNTs on the morphology of 80/20 (wt/wt) PA6/ABS blend through various characterization techniques. POLYM. ENG. SCI., 55:457–465, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
The compatibilization of the polymer blend polyamide 6/poly(phenylene oxide) (PA-6/PPO) system has been studied using the reactive random copolymer styrene–maleic anhydride (SMA) as a compatibilizer precursor. SMA is miscible with PPO when the MA content of SMA is not higher than 8 wt %. The anhydride groups of SMA react with the amino end groups of PA-6 during melt blending to form a graft copolymer at the interface with a compatibilizing effect as a result. Two different blending procedures were compared to each other and the compatibilizing effect of the added SMA was evaluated for a matrix/dispersed particle type of morphology. The effect of the different material parameters such as the functionality of SMA (wt % MA in SMA) and the molecular weight of PA-6, and blending parameters such as the extrusion time was analyzed with respect to the blend phase morphology. Finally, the amount of reacted MA groups in the blends PA-6/(PPO/SMA) was determined with FTIR after the use of an extraction method to remove the PA-6 matrix phase. The comparison between the morphological data (particle size reduction of the dispersed PPO/SMA phase) and the FTIR data (amount of reacted MA groups) of the blends considered, turned out to be very logical. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 889–898, 1999  相似文献   

7.
The effects of polyethylene‐grafted maleic anhydride (PE‐g‐MA) on the thermal properties, morphology, and tensile properties of blends of low‐density polyethylene (LDPE) and corn starch were studied with a differential scanning calorimeter (DSC), scanning electron microscope (SEM), and Instron Universal Testing Machine, respectively. Corn starch–LDPE blends with different starch content and with or without the addition of PE‐g‐MA were prepared with a lab‐scale twin‐screw extruder. The crystallization temperature of LDPE–corn starch–PE‐g‐MA blends was similar to that of pure LDPE but higher than that of LDPE–corn starch blends. The interfacial properties between corn starch and LDPE were improved after PE‐g‐MA addition, as evidenced by the structure morphology revealed by SEM. The tensile strength and elongation at break of corn starch–LDPE–PE‐g‐MA blends were greater than those of LDPE–corn starch blends, and their differences became more pronounced at higher starch contents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2904–2911, 2003  相似文献   

8.
Blends of polystyrene (PS) and polyurethane (PU) elastomer were obtained by melt mixing, using poly(styrene-co-maleic anhydride) (SMA) containing 7 wt % of maleic anhydride groups as a reactive compatibilizer. Polyurethanes containing polyester flexible segments, PU-es, and polyether flexible segments, PU-et, were used. These polyurethanes were crosslinked with dicumyl peroxide or sulfur to improve their mechanical properties. The anhydride groups of SMA can react with the PU groups and form an in situ graft copolymer at the interface of the blends during their preparation. The rheological behavior was accompanied by torque versus time curves and an increase in the torque during the melt mixing was observed for all the reactive blends, indicating the occurrence of a reaction. Solubility tests, gel permeation chromatography, and scanning electronic microscopy confirmed the formation of a graft copolymer generated in situ during the melt blending. These results also indicate that this graft copolymer contains C C bond between SMA and PU chains. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2514–2524, 2001  相似文献   

9.
In this study, the effects of Ag, ZnO, and CuO nanoparticles (NPs) on the mechanical, thermal, and biodegradability properties of the compatibilized polyethylene (PE)/thermoplastic starch (TPS) blends were investigated. Polyethylene-grafted maleic anhydride (PE-g-MA) was used as the compatibilizer. The compatibilized PE/TPS blends with different NPs were prepared by melt mixing method in a laboratory scale extruder and then pressurized in the press machine. The use of ZnO NP together with the compatibilizer in PE/TPS-based films significantly increased the tensile stress values. The use of different type NPs did not cause any significant change in the thermal stability of PE/TPS-based films. However, the effects of NPs were observed on the TPS degradation steps. The prepared films with different NPs showed an antibacterial activity between 60% and 70%. The highest crystallinity value was obtained in Ag NP containing films, among others. According to scanning electron microscopy analysis, better distribution was observed for ZnO and Ag NPs than CuO NP. In general, it can be said that the addition of NPs to PE/TPS-based blends significantly reduces the partial biodegradability of the resulting films.  相似文献   

10.
A reactive compatibilizer, styrene‐maleic anhydride (SMA) was used to compatibilize the blends of polystyrene (PS) and ethylene‐vinyl acetate‐vinyl alcohol (EVAOH), which was synthesized from ethylene‐vinyl acetate (EVA) using transesterification reaction. The compatibilized blends with different compositions were prepared using a twin‐screw extruder and injection molded into the required test specimens. Morphology of Charpy impact‐fractured surfaces, tensile, and impact properties of the blends were investigated. Fourier‐transform infrared spectroscopy (FTIR) was also applied for specific samples to elucidate the presence of the functional groups reaction necessary for reactive compatibilization. The results of the ternary PS/EVAOH/SMA blends illustrate that the addition of SMA as a compatibilizer slightly reduce the elongation at break. From the impact‐fractured surfaces of the blends, it is evident that the morphology developed sizable pores when SMA was added into the blends. This might be attributed to the residual octanol‐1, produced from the synthesis of EVAOH, as there is a possibility of a reaction between hydroxyl groups in the octanol‐1 and the anhydride groups in the SMA. This disrupted the stability of the morphology and resulted in the decrease in the elongation, and hence, the tensile toughness. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 209–217, 2002  相似文献   

11.
WB Xie  KC Tam  CY Yue  YC Lam  L Li  X Hu 《Polymer International》2003,52(5):733-739
A co‐polyester liquid crystalline polymer (LCP) was melt blended with an acrylonitrile–butadiene–styrene copolymer (ABS). LCP fibrils are formed and a distinct skin/core morphology is observed in the injection moulded samples. At higher LCP concentration (50 wt%), phase inversion occurs, where the dispersed LCP phase becomes a co‐continuous phase. While the tensile strength and Young's modulus remain unchanged with increasing LCP content up to 30 wt% LCP, a significant enhancement of the modulus at 50 wt% LCP is observed due to the formation of co‐continuous morphology. The blend modulus is lower than the values predicted by the rule of mixtures, suggesting a poor interface between the LCP droplets and ABS matrix. A copolymer of styrene and maleic anhydride (SMA) was added in the LCP/ABS blends during melt blending. It is observed that SMA has a compatibilizing effect on the blend system and an optimum SMA content exists for mechanical properties enhancement. SMA improves the interfacial adhesion, whereas excess of SMA reduces the LCP fibrillation. Copyright © 2003 Society of Chemical Industry  相似文献   

12.
Polystyrene (PS) and polyethylene (PE), along with their reactive counterparts, i.e., polystyrene having oxazoline reactive groups (OPS) and polyethylene with carboxylic acid groups (CPE), were melt blended in a Rheomix mixer. These blends were prepared by mixing these polymers in various proportions under a variety of conditions. In an alternate procedure the OPS, CPE graft polymer (OPS-g-CPE) was prepared by melt blending these two polymers beforehand, and subsequently this grafted polymer was used as a compatibilizer for PS–PE blends. The effects of the addition of OPS and CPE, on the one hand, and OPS-g-CPE, on the other hand, on the compatibility of PS–PE blends were investigated. The morphology of these blends was examined with a scanning electron microscope (SEM) and related to their tensile properties. The PS–PE blends are found to have the typical coarse morphology of incompatible blends and poor tensile properties while their reactive counterparts, OPS-CPE blends, have fine grain microstructure and show improved tensile strength throughout the range and improved elongation in the PE-rich blends. Relatively low concentrations of the reactive pair, oxazoline and carboxylic acid, are shown to be necessary to produce improved compatibility. The preblended graft copolymer OPS-g-CPE imparts compatibility to PS–PE blends also but not as effectively. This suggests that the addition of OPS and CPE during melt mixing of PS and PE forms OPS-g-CPE polymer at the interface and that these ingredients act as “in situ reactive compatibilizers” which improve physical properties.  相似文献   

13.
Ch Tselios  D Bikiaris  V Maslis  C Panayiotou 《Polymer》1998,39(26):6807-6817
Polypropylene (PP) and low density polyethylene (LDPE) were melt blended in proportions of 75/25, 50/50 and 25/75 w/w, respectively. Poly(propylene-g-maleic anhydride) (PP-g-MA) with 0.8 mol% maleic anhydride content and poly(ethylene-co-vinyl alcohol) (EVAL) with 7.5 mol% vinyl alcohol content were added at a 50/50 w/w proportion as in situ reactive compatibilizers. Four series of compatibilized blends were produced containing 2.5, 5, 10 and 20 wt% compatibilizer in the final blend. The compatibilization reaction was followed by a torque increase during mixing and by FTi.r. spectroscopy. A notable improvement in tensile strength, elongation at break and impact strength was observed for all blends after compatibilization and, in particular, for the blends containing 10 wt% compatibilizer. Scanning electron microscopy (SEM), aided by micro-Raman spectroscopy, was used for investigating the morphology of the blends.  相似文献   

14.
《Polymer》2007,48(1):356-362
The 20/80 blends of polyamide 6 (PA6) and acrylonitrile–butadiene–styrene copolymer (ABS) in the presence of styrene–maleic anhydride copolymer (SMA) and multiwall carbon nanotubes (MWNT) were prepared using melt-mixing technique. Crystallization behavior of the PA6 phase in the blends was studied using DSC, WAXD and SAXS techniques. Blends' morphology was characterized by SEM. We observed fractionated crystallization of PA6 phase in 20/80 PA6/ABS blends. It was also observed that the phenomenon of fractionated crystallization was influenced by the presence of both SMA and MWNT. Blends' morphology revealed the presence of wide domain size distribution of PA6 droplets in the amorphous ABS matrix. On incorporation of either SMA or SMA modified MWNT, the average domain size of PA6 droplets was found to be finer up to 1 wt% SMA modified MWNT. Encapsulation of SMA copolymer layer on the MWNT surface was also evident from SEM micrographs. SAXS analysis revealed the formation of multiple lamellae stacking of PA6 phase in the presence or absence of SMA and MWNT in 20/80 PA6/ABS blends. This was attributed to the formation of less perfect crystallites formed during the cooling of melt at higher degree of supercooling.  相似文献   

15.
Linear low‐density polyethylene (LLDPE)/poly(vinyl alcohol) (PVA) blends were prepared by melt mixing. LLDPE/PVA weight ratios between 90/10 and 40/60 were studied. The effects of the silane coupling agent 3‐(trimethoxysilyl)propyl methacrylate on processability, gel fraction, component interaction, compatibility, thermal stability, tensile properties, and morphology of the LLDPE/PVA blends were investigated. The results indicated that the presence of silane increased the equilibrium torque of the LLDPE/PVA blends because of crosslinking and better compatibility between LLDPE and PVA. The degree of crosslinking was quantified by gel fraction measurements, and crosslinking was confirmed by Fourier Transform Infrared Spectroscopy analysis. The melting temperature depression of PVA and LLDPE further suggested the formation of crosslinks. The thermal stability and tensile properties such as tensile strength, elongation at break, and Young's modulus of the blends also increased with the incorporation of silane. Improved compatibility between LLDPE and PVA in the blends with silane was demonstrated by the interconnected rough material observed in scanning electron microscopy images that differed from the morphology of the LLDPE/PVA blends without silane. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

16.
Morphological and thermal properties of immiscible and incompatible polymer blends of commercial polyamide-6 (PA-6) and poly(methyl methacrylate) (PMMA) synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization have been studied in the presence of a compatibilizer consisting of either a random copolymer of styrene-maleic anhydride (SMA) or a diblock copolymer poly(methyl methacrylate) and polystyrene (PMMA-PS) also synthesized via RAFT polymerization. Blends of PA-6/PMMA were obtained by extrusion mixing. During melt compounding in the extruder, the functional groups of the polymer components were reacted in the presence of a compatibilizer, which changed considerably the morphology of the blend. After compatibilization, particles of PMMA in the PA-6 were smaller and better dispersed. The morphology and thermal properties of the blends were characterized using scanning electron microscopy (SEM) and differential scanning calorimetry (DCS).  相似文献   

17.
通过扫描电镜、差示扫描量热仪和力学性能测试等方法研究了聚丙烯接枝马来酸配和酷酸乙烯酷(PP-g-MAH/VAc)对聚丙烯康酸胺6(80/20}共混体系的增容效果。结果表明,PP-g-(MAH/DAc)用于PP/PA6共混体系,分散相PA6的微区尺寸可以减小到5μm以下,相应地提高了共混物的断裂伸长率、拉伸强度和冲击强度。使用接枝率为5.3%的PP-g-(MAH/VAc)作为相容剂,当用量为8%时,体系的拉伸强度为60.88MPa,断裂伸长率为558%,冲击强度为5.28KJ/㎡.DSC分析表明,PP/PA6共混体系各组分相互促进成核,结晶度降低。FTIR结果表明,PP-g-(MAH/VAc)中的MAH上的酸配基团与PA6中的酸胺键发生了化学反应从而改善了体系的相容性。  相似文献   

18.
The microphase separation structure in the molten state and the structure formation in crystallization from such ordered melt were investigated for the blends of polystyrene–polyethylene block copolymers (SE) with polystyrene homopolymer (PS) and polyethylene homopolymer (PE) and for the blends consisting of two kinds of SE with different copolymer compositions from each other, using synchrotron small-angle X-ray scattering techniques (SAXS). The copolymer compositions of SE block copolymers employed were 0.34, 0.58 and 0.73 wt. fraction of PE, and their melt morphologies were cylindrical, lamellar and lamellar, respectively. Macrophase separation or the morphology change in the melt occurred depending on the molecular weight and the blend composition, as reported so far. In crystallization from such macrophase-separated and microphase-separated melts, the melt morphology was completely kept for all the blends. Crystallization behavior was also investigated for the blends. The crystallization within the spherical and cylindrical domains surrounded by glassy PS was not observed for SE/PS blends. In the crystallization from the macrophase-separated melt, two exothermal peaks were observed in the DSC measurements, while a single peak was observed for other blends. For the blends with PS, the degree of crystallinity was depressed and the apparent activation energy of crystallization was high, compared to those for the corresponding neat SE. For SE/PE and SE/SE blends, those were changed depending on the blend composition.  相似文献   

19.
Blends of linear low density polyethylene (LLDPE) and LLDPE grafted maleic anhydride (LLDPE‐g‐MA) were prepared by melt mixing. The surface of cast films with different contents and types of maleated PE were characterized through contact angle and wetting tension measurements, as well as attenuated total reflection IR spectroscopy. The tensile properties and light transmission of extruded films, as well as the performance of these films compared with commercial “antifog” films, for greenhouses were determined. The carbonyl polar groups on the surface of LLDPE/LLDPE‐g‐MA blends increased, and the equilibrium contact angles of water and dimethylformamide decreased when the content of maleated PE increased. Films made with these blends showed a noticeable reduction in water drop formation as the MA content was increased and when using LLDPE‐g‐MA of lower molecular weight. The light transmission through these films under condensation was improved when using increased contents of MA, which promotes better wetting of the water on the surface. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1802–1808, 2001  相似文献   

20.
A mechanical process called solid-state shear pulverization (SSSP) was used to create blends or composites of polyethylene (PE) and starch that resulted in damaged granular structures. Because starch granules are unchanged when polymer/starch blends are made by melt mixing, this is the first time that damage (surface roughening, cracking, and clustering) to starch granule morphology has been reported in polymer/starch blends or composites. These morphological changes result in a 29% reduction in oxygen permeability for a 70/30 wt% PE/starch blend made by SSSP relative to neat PE; this compares with a 21% reduction in oxygen permeability when a similar blend is made by melt processing. In addition, relative to neat PE, the tensile modulus of a 70/30 wt% PE/starch blend is increased by 20% in the damaged starch case (vs. 10% in the blend made by melt mixing) while the reduction in tensile strength is significantly smaller than that found in melt-mixed blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号