首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiblock copolymers containing a large number of blocks have distinct microstructures and mechanical responses that are different from that of conventional diblock and triblock copolymers. A combined simulation method that utilized MesoDyn for morphologies and probabilistic lattice spring model (LSM) for mechanical properties was adopted in this work. Simulation results show that tensile strength increases dramatically with an increase in the number of blocks within “hard-soft” multiblock copolymers. This phenomenon can be described by the occurrence of bridging and looping chain conformations in experiment. One-dimensional lamellae were built to provide an ideal morphology for studying the influence of lamellar orientation on multiblock copolymer mechanical properties. During tensile tests different failure processes were observed with two kinds of interface strength that corresponded to a difference in chain structures (diblock, triblock or multiblock copolymers). These studies provide an efficient method for correlating the complex morphologies to the mechanical response of multiblock copolymers.  相似文献   

2.
The use of multiblock copolymers for the compatibilization of immiscible polymer blends is controversially discussed in the literature. Investigations have been carried out to estimate the effect of multiblock copolymers containing segments of a liquid crystalline polyester (LCP) and polysulfone (PSU) segments in blends of the based homopolymers. One goal was to determine whether multiblock copolymers provide an opportunity for compatibilizing PSU/LCP blends. By using PSU/LCP multiblock copolymers with different molecular weights of the blocks in the appropriate binary, solution-casted blends, it was shown that the interpenetration of the polysulfone phase of the block copolymer and the PSU matrix leads to an improved miscibility of the blend. This effect is retained in ternary blends of PSU, LCP, and the multiblock copolymer, assuming a certain critical molecular weight of the multiblock copolymer segments. In addition, some mechanical characteristics of PSU/LCP melt blends such as the E-modulus and fracture strength are improved by adding long-segmented multiblock copolymers. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 2293–2309, 1997  相似文献   

3.
Oxymethylene-linked 2-vinylpyridine-oxyethylene (2VP-EO) mulitblock copolymers doped with LiClO4 or/and tetracyanoquinodimethane (TCNQ) showed ionic electronic and mixed (ionic-electronic) conductivity. Effects of the poly(oxyethylene) content and of the molar ratios of EO/Li and TCNQ/2VP on the conductivities of the complexes were studied. The optimum molar ratios of EO/Li and TCNQ/2VP were 10 and 1.0, respectively. The copolymers emulsified benzene/water systems and exhibited good phase-transfer catalysis properties in the Williamson reaction of solid potassium phenolate with n-butyl bromide. After neutralization with HCI solution, the copolymers showed polyelectrolyte solution properties.  相似文献   

4.
Ming Jiang  Xianyi Cao  Tongyin Yu 《Polymer》1986,27(12):1923-1927
To study the effect of the molecular architecture of a copolymer on its miscibility with corresponding homopolymers a series of block copolymers of styrene and isoprene with diblock, triblock and four-arm star architectures have been prepared and the morphologies of the blends of the copolymers and polyisoprene with different molecular weights have been examined by electron microscopy. The results show that miscibility varies in the sequence diblock>triblock>four-arm star copolymers. This sequence is in the opposite direction to the variation of the architectural complexity of the block copolymers, i.e. the more complex is molecular architecture, the greater is conformation restriction in microdomain formation and the less is solubility of homopolymer in corresponding domains.  相似文献   

5.
Styrene-butadiene multiblock copolymers were examined with both newly introduced and established rheological techniques and by transmission electron microscopy (TEM) to evaluate shear-induced structural changes in these polymers. Transient rheological tests (based on superposed flow principles) were developed which probed structural changes that occur in the copolymers during and at the cessation of steady shear. Data from these tests indicated that for the cylindrical morphology copolymer (SB1) there were structural changes occurring during steady shear that were recovered upon cessation of shear. The recovery process took place on time scales that could be significant in processing. The lamellar morphology material (SB2) did not exhibit this recovery behavior. Longer-term structure changes were investigated using established techniques and showed differences between the cylindrical and lamellar copolymers. When tested at 210°C, peaks in tan δ occurred at 30 rad/s for SB1 and at 0.5 rad/s for SB2 with saturation strain levels of 150 strain units (SU) for SB1 and 80 SU for SB2. TEM analysis of SB2 indicated that, although rheological changes are significant up to 80 SU, better alignment of the domain morphology can be achieved at moderately low strains of 7 SU. This indicates that the copolymers' rheological changes, which occur as a result of steady shearing, may not be due entirely to domain alignment, but may also be due to more local molecular rearrangements (e.g., chain disentanglement). © 1996 John Wiley & Sons, Inc.  相似文献   

6.
Model amphiphilic conetworks based on cross-linked block copolymers of the hydrophilic ionizable 2-(dimethylamino)ethyl methacrylate (DMAEMA, 25 nominal units per block) and the hydrophobic n-butyl methacrylate (BuMA, 5 nominal units per block) bearing three, five, seven and nine blocks were synthesized using group transfer polymerization. 1,4-Bis(methoxytrimethylsiloxymethylene)cyclohexane and ethylene glycol dimethacrylate were used as the bifunctional initiator and the cross-linker, respectively. Network synthesis was performed by sequential monomer/cross-linker additions to the reaction flask, which was pre-loaded with tetrabutylammonium bibenzoate (polymerization catalyst), tetrahydrofuran (THF, solvent), and initiator. All linear conetwork precursors were characterized using gel permeation chromatography and proton nuclear magnetic resonance spectroscopy and found to have molecular weights (MWs) and compositions reasonably close to the theoretically expected values. All polymer conetworks were characterized in terms of their degree of swelling (DS) in THF, in neutral water, and in aqueous media as a function of the solution pH. It was found that the DSs were highest in acidic pH due to the repulsive forces and the osmotic pressure developed by the ionization of the DMAEMA units. Intermediate values of the DSs were observed in THF, whereas the lowest DSs were measured in neutral water. In THF, the DSs increased with the MWs of the (final) linear (co)polymer precursors, while in acidic water the DSs increased with the DMAEMA content in the (co)networks.  相似文献   

7.
通过聚乙二醇、聚丙二醇、遥爪双羟基聚苯乙烯3种预聚物以甲苯二异氰酸酯(TDI)为偶联剂合成氧乙烯-氧丙烯-苯乙烯多嵌段共聚物。研究其合成条件、精制及表征,并研究其力学性能、吸水性及乳化性质。结果表明,某些组成的嵌段共聚物呈物热塑性弹性体行为,吸水率达到500%~700%。  相似文献   

8.
9.
Two multiblock copolymers of styrene and propylene oxide and four acrylate copolymers with uniform polystyrene grafts were prepared and blended. The blends are melt processable and their properties varied from thermoplastic elastomers to toughened plastics. The relationship between mechanical properties and composition of the thermoplastic blends indicated that all the blends exhibited a synergism, which is probably due to the increase of miscibility between the components caused by the same physical crosslinks — the glassy domains aggregated from both the polystyrene grafts and polystyrene blocks. The synergistic effect seemed more evident when two different graft copolymers were blended together than when one multiblock copolymer was blended with one graft copolymer. In all cases a maximum tensile strength appeared at the blend with 90 wt.-% of the component, possessing higher tensile strength and ultimate elongation.  相似文献   

10.
烯烃多嵌段共聚物是一种新型的聚烯烃热塑性弹性体,主要通过催化乙烯和1-辛烯链穿梭聚合制备得到多嵌段含"软段"和"硬段"的聚合物,其独特结构和性能已经成为新材料的研究热点.本文概述了烯烃嵌段多共聚物的结构和制备合成,并指出了烯烃多嵌段共聚物性能和应用前景.  相似文献   

11.
C.S Wang  G.S.Y Yeh 《Polymer》1982,23(4):505-508
In this study molecular alignment in copolymers of polyethylene terephthalate (PET) and p-hydroxybenzoic acid (PHB) was examined by means of differential radial distribution function (DRDF) analysis of wide angle X-ray scattering data. The study was carried out using two representative copolymers with the PHB content of 30 and 60 mol%. The DRDF curves for the amorphous and the partially crystalline samples of these copolymers showed periodic intermolecular peaks up to various radial distances. The appearance of these peaks at ~5 A? periodicity suggested the existence of more-or-less parallel chain segments in the copolymers. The extent of the lateral molecular organization was ~15 and 30 A? for the amorphous copolymers containing 30 and 60 mol% PHB, respectively. A substantial structural difference was therefore shown for the copolymers in this composition range. The DRDF curve for the amorphous copolymer with 30 mol% PHB was found to be very similar to that for the previously reported glassy PET with 0 mol% PHB, indicating that the two materials had almost the same intermolecular structure. The structural information revealed by these DRDF results was in agreement with the various property changes caused by varying PHB contents of the copolymers.  相似文献   

12.
Graft copolymers of poly(ethylene‐co‐vinyl acetate) (EVA) grafted with polystyrene (PS) with different molecular weight and different EVA/PS ratio were prepared by coupling reaction between acyl chloride functionalized PS (PS‐COCl) and hydrolyzed EVA. PS‐COCl with controlled molecular weight was prepared by anionic polymerization of styrene, followed by end capping with phosgene. The effect of the molecular architecture of the graft copolymer on the compatibilization of PS/EVA blends was investigated. Substantial improvement in the elongation at break and ductility was observed using the graft copolymer with PS segments with molecular weight as high as 66,000 g/mol and with a PS proportion equal or higher than EVA. The effect of the compatibilization on the morphology was also investigated by scanning electron microscopy and atomic force microscopy. The blend that presented the highest value of elongation at break also displayed dispersed phase constituted by inclusions of the PS phase inside the EVA particle forming a cocontinuous structure, as observed by AFM. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

13.
Polydimethylsiloxane (PDMS)–polyamide multiblock copolymers were synthesized by three different methods, i.e., two-step low-temperature solution polycondensation, one-step solution polycondensation, and interfacial polycondensation. In the two-step method, α,ω-diacid chlorideterminated polyamide oligomers were prepared from trans-2,5-dimethylpiperazine (DMP) and terepthaloyl chloride (TPC) or isophthaloyl chloride (IPC) in chloroform in the presence of triethylamine, which in turn were subjected to reaction with α,ω-bis (3-aminopropyl) polydimethylsiloxane (PDMS–diamine) in the same solvent to from multiblock copolymers. In the one-step method, the reaction components, DMP, TPC (or IPC), and PDMS–diamine, were reacted altogether in chloroform in the presence of triethylamine. In the interfacial method, the reaction components were also reacted altogether in an aqueous sodium hydroxide–chloroform two-phase system. These polycondensations afforded the multiblock copolymers having inherent viscosities of 0.1–1.3 dL g?1 in m-cresol. The PDMS–polyamide multiblock copolymers dissolved in formic acid and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), and transparent, ductile, and elastomeric films were obtained by casting from the HFIP solutions. The films of the multiblock copolymers prepared by three different methods exhibited similar properties by means of thermal analysis and tensile measurements. In the multiblock copolymers, the tensile strength and modulus of the films decreased with increasing the PDMS content, whereas the elongation at break increased.  相似文献   

14.
Butadiene-oxyethylene multiblock copolymers were synthesized via coupling reaction of telechelic α,ω-dihydroxypolybutadiene (PB) and poly(ethylene glycol) with tolylene-2,4-diisocyanate. The poly(oxyethylene) (PEO) content of the purified copolymer was determined by elemental analysis and the structural parameters were calculated from number-average molecular weights of the purified copolymer, determined by membrane osmometry, and those of the prepolymers, determined by vapor pressure osmometry. The total number of blocks varied from 60 to 100. Transmission electron microscopy showed the existence of multiphases in the copolymer. Wide angle X-ray diffraction indicated that the crystallinity increased from 0 to 50% with increasing weight ratio of PEO/PB. These multiblock copolymers exhibit excellent emulsifying properties, as compared to the multiblock copolymers or graft copolymer of oxyethylene and styrene. Only 0.1 g of polymer was needed to make 100 mL of a water/toluene (9:1, w/w) mixture form an emulsion completely. When the weight ratio of water/toluene was changed from 9:1 to 7:3 or the molecular weight of PEG from 6000 to 2000, the oil-in-water type emulsion was changed to water-in-oil type. The copolymers also showed a good phase transfer catalytic effect when applied to the Williamson reaction. Conversion of potassium phenolate into butyl phenolate reached over 95% when the multiblock copolymer containing 3 mmol of PEO was used for 1 g potassium phenolate, whereas no reaction occurred without using the multiblock copolymer at 90°C for 4 h.  相似文献   

15.
通过聚乙二醇、聚丙二醇、遥爪双羟基聚苯乙烯 3种预聚物以甲苯二异氰酸酯 (TDI)为偶联剂合成氧乙烯 -氧丙烯 -苯乙烯多嵌段共聚物。研究其合成条件、精制及表征 ,并研究其力学性能、吸水性及乳化性质。结果表明 ,某些组成的嵌段共聚物呈现热塑性弹性体行为 ,吸水率达到 5 0 0 %~70 0 %。  相似文献   

16.
1H spin-diffusion solid-state NMR, in combination with other techniques, was utilized to investigate the effect of molecular architecture and temperature on the interphase thickness and domain size in poly(styrene)-block-poly(butadiene) and poly(styrene)-block-poly(butadiene)-block-poly(styrene) copolymers (SB and SBS) over the temperature range from 25 to 80 °C. These two block copolymers contain equal PS weight fraction of 32 wt%, and especially, polystyrene (PS) and polybutadiene (PB) blocks are in glass and melt state, respectively, within the experimental temperature range. It was found that the domain sizes of the dispersed phase and interphase thicknesses in these two block copolymers increased with increasing temperature. Surprisingly we found that the interphase thicknesses in these two block copolymers were obviously different, which was inconsistent with the theoretical predictions about the evolution of interphase in block copolymer melts by self-consistent mean-field theory (SCFT). This implies that the interphase thickness not only depends strongly on the binary thermodynamic interaction (χ) between the PS and PB blocks, but also is influenced by their molecular architectures in the experimental temperature range.  相似文献   

17.
在端双羟基聚苯乙烯和聚丙二醇中加入偶联剂2,4-甲苯二异氰酸酯(TDI),采用一步法或二步法制备了苯乙烯-环氧丙烷多嵌段共聚物。结果表明,由二步法制备的共聚物较一步法制备共聚物中均聚物的含量少。粗产物可分别用乙醇及十氢萘萃取,以除去未反应的聚丙二醇及端双羟基聚苯乙烯。纯化物经红外光谱法、核磁共振波谱法、凝胶渗透色谱法、膜渗透压法和元素分析法测试表明,试样为聚苯乙烯与聚环氧丙烷的多嵌段共聚物。  相似文献   

18.
Summary Multiblock copolymers of styrene and -methylstyrene (¯Mn 70.000 g.mole–1) with various -methylstyrene contents were synthetized by anionic polymerization. The glass transition temperatures (Tg) of these copolymers have been measured by D.T.A. A single Tg was observed over the whole composition range. This Tg obeys the derived GORDON and TAYLOR equation. Moreover these copolymers are heat resistant up to temperatures of at least 280°C.  相似文献   

19.
Isotactic polypropylene (iPP)-polystyrene (PS) and iPP-poly(methyl methacrylate) (PMMA) multiblock copolymers were synthesized by atom transfer radical coupling (ATRC) of PS-iPP-PS and PMMA-iPP-PMMA triblock copolymers obtained by atom transfer radical polymerization (ATRP) of styrene (St) and methyl methacrylate (MMA), respectively, using α,ω-dibromoisobutyrateoligopropylene (iPP-Br) as a bifunctional macroinitiator. The iPP-Br was prepared by hydroxylation and subsequent esterification of telechelic oligopropylene having terminal vinylidene double bonds at both ends obtained by controlled thermal degradation of iPP. ATRP of St and (meth) acrylic monomers using iPP-Br formed the corresponding triblock copolymers. It was confirmed that the PMMA-iPP-PMMA triblock copolymer was effective as the compatibilizer for the iPP/PMMA blend. An iPP-PS multiblock copolymer (Mn: 25?000 g/mol and Mw/Mn: 4.1) was prepared by ATRC of PS-iPP-PS triblock copolymer (Mn: 8900 g/mol and Mw/Mn: 1.3). ATRC with St of PMMA-iPP-PMMA triblock copolymer (Mn: 13?000 g/mol and Mw/Mn: 1.4) provided an iPP-PMMA multiblock copolymer containing St chains (Mn: 39?000 g/mol and Mw/Mn: 2.8).  相似文献   

20.
Polyurethane (PU)–polyacrylic acid (PAAc) multiblock copolymers have been prepared via a macroiniferter technique, and were tested for living mechanism, thermal, and water swell of the cast films. It was found that molecular weight of the PU–PAAc block copolymers linearly increased while molecular weight distribution decreased with conversion. As the PAAc content increases, water swell of the cast films and crystalline melting temperature (Tm) of PU decreased while glass transition temperature of PU increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号