首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this research, 9 series of ramie fibers were treated under low-temperature plasma with diverse output powers and treatment times. By analysis of the surface energy and adhesion power with epoxy resin, 3 groups as well as control group were chosen as reinforced fibers of composites. The influences of these parameters on the ramie fiber and its composites such as topography and mechanical properties were tested by scanning electron microscopy (SEM), atomic force microscopy (AFM), tensile property and fragmentation test of single-fiber composites. Contact angle and surface free energy results indicated that with the increased treatment times and output powers, surface energy and adhesion work with epoxy resin improved. Compared with the untreated fibers, surface energy and adhesion work with epoxy resin grew 124.5 and 59.1% after 3 min-200 w treatment. SEM and AFM showed low temperature plasma treatment etched the surface of ramie fiber to enhance the coherence between fiber and resin, consequently fiber was not easy to pull-out. After 3 min-200 w treatment, tensile strength of ramie fiber was 253.8 MPa, it had about 30.5% more than that of untreated fiber reinforced composite. Interface shear stress was complicated which was affected by properties of fiber, resin and interface. Fragmentation test showed biggest interface shear stress achieved 17.2 MPa, which represented a 54.0% increase over untreated fiber reinforced composites.  相似文献   

2.
Kevlar 149 fibers were surface-modified by chlorosulfonation and subsequent reaction of -SO2O with some reagents (e.g. glycine, water, ethylenediamine, and 2-butanol) to improve the adhesion to epoxy resin. The mechanical properties and surface topography of the modified fibers were investigated at different reaction times and reagent concentrations. The surface functional groups introduced into the surface of the fibers were identified by X-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectroscopy (SIMS). The interfacial shear strength (IFSS) between the fibers and epoxy resin was measured by the microbond test. The results showed that the IFSS was markedly improved (by a factor of 2.25) by the chlorosulfonation/glycine treatment and that the fiber strength was not affected. Scanning electron microscopy (SEM) was also used to study the surface topography of fibers pulled from the epoxy resin. Furthermore, energy dispersive X-ray (EDX) spectroscopy was used to qualitatively examine the amount of sulfur in the fiber surfaces and in the fracture surfaces of fibers from microbond pull-out specimens. The results of EDX examination were consistent with a change of the fracture mode from the interface between the fiber and the epoxy resin to a location within the fiber and/or epoxy resin as observed by SEM.  相似文献   

3.
This study is focused on the impact of oxygen plasma treatment on properties of carbon fibers and interfacial adhesion behavior between the carbon fibers and epoxy resin. The influences of the main parameters of plasma treatment process, including duration, power, and flow rate of oxygen gas were studied in detail using interlaminar shear strength (ILSS) of carbon fiber composites. The ILSS of composites made of carbon fibers treated by oxygen plasma for 1 min, at power of 125 W, and oxygen flow rate of 100 sccm presented a maximum increase of 28% compared to composites made of untreated carbon fibers. Furthermore, carbon fibers were characterized by scanning electron microscopy (SEM), tensile strength test, attenuated total reflectance Fourier transform infrared (ATR-FTIR), and Raman spectroscopy analyses. It was found that the concentration of reactive functional groups on the fiber surface was increased after the plasma modification, as well the surface roughness, which finally improved the interfacial adhesion between carbon fibers and epoxy resin. However, high power and long exposure times could partly damage the surface of carbon fibers and decrease the tensile strength of filaments and ILSS of treated fiber composites.  相似文献   

4.
IM7 carbon fibers were surface treated in methane, ethylene, trifluoromethane and tetrafluoromethane plasmas. The surface chemical composition of the fibers was determined by X-ray photoelectron spectroscopy (XPS). The adhesion between as-received and plasma-treated carbon fibers and polyethersulfone (PES) and an epoxy resin was measured by the microbond pull-out test. XPS showed that the methane and ethylene plasmas deposited a thin layer of hydrocarbon on the fiber surface. The trifluoromethane plasma deposited a layer of fluorocarbon on the surface of the fibers. The tetrafluoromethane plasma etched the fibers and introduced a significant amount of fluorine on the surface. The microbond pull-out test results indicated that an etching plasma, such as the tetrafluoromethane plasma, improved the adhesion between carbon fibers and PES. These results are consistent with earlier work performed with ammonia plasma. The adhesion is believed to be due primarily to the differential thermal shrinkage between the fiber and the matrix. It was shown that in the case of a reactive matrix such as an epoxy resin, the fiber chemical composition plays a role in the fiber-matrix adhesion. However, this chemical effect is secondary to the cleaning effect of the surface treatment.  相似文献   

5.
RF-plasma polymerization and bonding of allylamine onto ultrahigh molecular weight polyethylene (UHMWPE) “Spectra™-900” is described using an inductively coupled plasma reactor. This process was found to enhance the interfacial strength between the fibers (Spectra-900) and room-temperature-cured epoxy matrix up to fivefold. Fibers covalently coated with allylamine plasma showed no loss in tensile strength, while argon gas plasma pretreatment of the same fibers caused up to 10% reduction in tensile strength depending on the energy and duration of the treatment. Optimum treatment was attained through a short argon plasma etching (15 s), followed by allylamine polymerization and coating for 3 min. The coating process was found to protect the fiber surface from etching by plasma ion bombardment. A loss of 19% of the original diameter was found during the 15 s precoating etching with argon plasma, indicating the sensitivity of the fiber structure to plasma etching.  相似文献   

6.
This study intends to produce plasma polymer thin films of γ-glycidoxypropyltrimethoxysilane (γ-GPS) on glass fibers in order to improve interfacial adhesion of glass fiber-reinforced epoxy composites. A low frequency (LF) plasma generator was used for the plasma polymerization of γ-GPS on the surface of glass fibers at different plasma powers and exposure times. X-ray photoelectron spectroscopy (XPS) and SEM analyses of plasma polymerized glass fibers were conducted to obtain some information about surface properties of glass fibers. Interlaminar shear strength (ILSS) values and interfacial shear strength (IFSS) of composites reinforced with plasma polymerized glass fiber were evaluated. The ILSS and IFSS values of non-plasma polymerized glass fiber-reinforced epoxy composite were increased 110 and 53%, respectively, after plasma polymerization of γ-GPS at a plasma power of 60 W for 30 min. The improvement of interfacial adhesion was also confirmed by SEM observations of fractured surface of the composites.  相似文献   

7.
常压等离子体改善高性能纤维粘结性的研究   总被引:2,自引:1,他引:1  
以氦气为载气,氧气为反应气体,对高强度聚乙烯和Twaron 1000芳纶两种高性能纤维进行常压等离子体处理,来改善纤维的粘结性能;采用单纤维抽拔实验测定等离子体处理前后纤维与环氧树脂之间的界面剪切力;利用原子力显微镜和X射线光电子能谱仪分析等离子体处理前后纤维表面形态和化学成分的变化。结果表明:高强度聚乙烯纤维和芳纶经常压等离子体处理后,纤维表面粗糙度增加,纤维表面碳元素含量下降,羟基、羧基等含氧或氮的极性基团增加,纤维粘结性能得到提高,但其强度无明显变化。  相似文献   

8.
The mechanical properties of a fiber-reinforced plastic are influenced by the adhesion between a reinforcing fiber and a matrix resin. In this work we tried to obtain strong adhesion between Kevlar 49TM yarn and a matrix resin through the formation of covalent bonds. Reactive groups were introduced onto a surface of the yarn by means of plasma-graft polymerization and then reacted with an epoxy resin/curing agent mixture as a matrix resin to form covalent bonds. Glycidyl methacrylate and acrylamide were used as mono-mers for plasma-graft polymerization. The degree of grafting was increased with increasing polymerization time. The grafted yarns enclosed with diglycidal ether of bisphenol-A/tri-ethylenetetramine 2.2 : 1 mixture were pulled out to obtain pull-out force after curing. The pull-out force increased with increasing degrees of grafting. The cóvalent bonds formed between the graft polymer and the matrix resin result in an increment of pull-out force. © 1996 John wiley & Sons, Inc.  相似文献   

9.
The effects of intense pulsed high power ion beam (HPIB) treatment of ultra-high strength polyethylene (UHSPE) fibers on the fiber/epoxy resin interface strength were studied. For this study, argon ions were used to treat Spectra? 1000 (UHSPE) fibers in vacuum. Chemical and topographical changes of the fiber surfaces were characterized using Fourier transform infrared spectroscopy in attenuated total reflectance mode (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), dynamic wettability measurements, and scanning electron microscopy (SEM). The fiber/epoxy resin interfacial shear strength (IFSS) was evaluated by the single fiber pull-out test. The FTIR-ATR and XPS data indicate that oxygen was incorporated onto the fiber surface as a result of the HPIB treatment. The wettability data indicate that the fibers became more polar after HPIB treatment and also more wettable. Although the total surface energy increased only slightly after treatment, the dispersive component decreased significantly while the acid-base component increased by a similar amount. SEM photomicrographs revealed that the surface roughness of the fibers increased following the HPIB treatment. The single fiber pull-out test results indicate that HPIB treatment significantly improved the IFSS of UHSPE fibers with epoxy resin. This enhancement in IFSS is attributed to increased roughness of the fiber surface resulting in mechanical bonding and in increased interface area, increased polar nature and wettability, and an improvement in the acid-base component of the surface energy after the HPIB treatment.  相似文献   

10.
在空气相对湿度为5%,65%和95%的条件下,应用氦气/氧气常压等离子体处理芳纶和超高强度聚乙烯纤维,采用单纤维抽拔实验测定处理前后纤维与环氧树脂间的层间剪切强度,利用原子力显微镜和X射线光电子能谱仪分析等离子体处理前后纤维表面形态和化学成分的变化.结果表明:等离子体处理纤维随着处理环境湿度的增加,水分促进了芳纶表面的...  相似文献   

11.
The hydrophilic nature of natural fibers adversely affects adhesion to a hydrophobic matrix, and consequently it may unfavorably influence the strength of the composite. Therefore, modifying the fiber or the matrix is essential to obtain optimum composite properties. In this work, hemp fibers were modified applying a paper sizing technique using SMA Imide resin (copolymer of styrene and dimethylaminopropylamine maleimide) as a surface modifying agent. The performance of the hemp/acrylic composite was improved significantly using the treated fibers. Inverse gas chromatography (IGC) and pull-out test were employed to study the hemp fiber/matrix interface and the surface characteristics of untreated and treated hemp fibers. The IGC results demonstrated that treated fibers had slightly higher dispersive force compared with untreated fibers. Moreover, modification of fibers with SMA Imide resin slightly decreased the basic character and significantly increased the acid character of hemp fibers. From the pull-out test, the average stress to pull the SMA-treated fibers out was 71% higher than that calculated for untreated fibers. The higher interfacial strength for the treated fibers shows that the SMA treatment had a beneficial influence on the adhesion of the acrylic resin to the hemp fibers. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

12.
Unsized AS-4 carbon fibers were subjected to RF plasma etching and/or plasma polymerization coating in order to enhance their adhesion to vinyl ester resin. Ar, N2 and O2 were utilized for plasma etching, and acetylene, butadiene and acrylonitrile were used for plasma polymerization coating. Etching and coating conditions were optimized in terms of plasma power, treatment time, and gas (or monomer) pressure by measuring the interfacial adhesion strength. Interfacial adhesion was evaluated using micro-droplet specimens prepared with vinyl ester resin and plasma etched and/or plasma polymer coated carbon fibers. Surface modified fibers were characterized by SEM, XPS, FT-IR, α-Step, dynamic contact angle analyzer (DCA) and tensile strength measurements. Interfacial adhesion between plasma etched and/or plasma polymer coated carbon fibers and vinyl ester resin was reported previously (Part 1), and characterization results are discussed is this paper (Part 2). Gas plasma etching resulted in preferential etching of the fiber surface along the draw direction and decreased the tensile strength, while plasma polymer coatings altered neither the surface topography of fibers nor the tensile strength. Water contact angle decreased with plasma etching, as well as with acrylonitrile and acetylene plasma polymer coatings, but did not change with butadiene plasma polymer coating. FT-IR and XPS analyses revealed the presence of functional groups in plasma polymer coatings.  相似文献   

13.
Ramie fiber/soy protein concentrate (SPC) polymer (resin) interfacial shear strength (IFSS) was measured using the microbond technique. To characterize the effect of plasticization, SPC resin was mixed with glycerin. Fibers were also treated with ethylene plasma polymer to reduce fiber surface roughness and polar nature to control the IFSS. Fiber surfaces after ethylene plasma polymerization, and fracture surfaces of specimens before and after the microbond tests were characterized using a scanning electron microscope (SEM). Some specimens were also characterized using electron microprobe analyzer (EMPA) to map the residual resin on the fiber surface after the microbond test. Effects of glycerin concentration in SPC and ethylene plasma fiber surface treatment time on the IFSS were investigated. Preparation of SPC resin requires a large amount of water. As expected, during drying of SPC resin, the microdrops shrank significantly. The high IFSS values indicate strong interfacial interaction in the ramie fiber/SPC resin system. This strong interfacial interaction is a result of a highly polar nature of both the ramie fiber and the SPC resin and rough fiber surface. Ethylene plasma polymerization was used to control the IFSS. The plasma polymer imparted a polyethylene-like, non-polar polymer coating on the fiber surface. As a result, the fiber surface became smoother compared to the untreated fiber. Both fiber smoothness and non-polar nature of the coating reduced the ramie fiber/SPC resin IFSS. Plasticization of the SPC resin by glycerin also decreased the adhesion strength of the ramie fibers with the SPC resin. The load-displacement plots for IFSS tests obtained for different resin and fiber combinations indicate different interfacial failure modes.  相似文献   

14.
The adhesion between carbon fibers and bismaleimide resins was evaluated using the microbond single fiber pull-out test. A commercially-available, methylene dianiline-based bismaleimide resin and a novel phosphorus-containing bismaleimide were tested with as-received and plasma-treated polyacrylonitrile-based carbon fibers. The surface chemical composition, topography, tensile strength, and surface free energy of the carbon fibers were studied using x-ray photoelectron spectroscopy, scanning electron microscopy, single fiber tensile tests, and dynamic contact angle analysis. The carbon fiber-bismaleimide adhesion improved when the carbon fiber received an oxidative commercial surface treatment or was exposed to an air or ammonia plasma prior to bonding.  相似文献   

15.
The adhesion between carbon fibers and bismaleimide resins was evaluated using the microbond single fiber pull-out test. A commercially-available, methylene dianiline-based bismaleimide resin and a novel phosphorus-containing bismaleimide were tested with as-received and plasma-treated polyacrylonitrile-based carbon fibers. The surface chemical composition, topography, tensile strength, and surface free energy of the carbon fibers were studied using x-ray photoelectron spectroscopy, scanning electron microscopy, single fiber tensile tests, and dynamic contact angle analysis. The carbon fiber-bismaleimide adhesion improved when the carbon fiber received an oxidative commercial surface treatment or was exposed to an air or ammonia plasma prior to bonding.  相似文献   

16.
A single-filament pull-out test was used to study adhesion of Kevlar-49 fibers to thermoplastic polymers. The test involved pulling a partially embedded fiber out of a polymer film. Kevlar-49 fibers with three different surface treatments were used with five thermoplastic materials. The test resulted in the measurement of two properties, an interfacial bond strength and a frictional shear strength. The interfacial bond strength is an essential factor in determining the critical aspect ratio of discontinuous fibers in a composite. The frictional shear strength was found to correlate with the tensile strength of discontinuous fiber composites which fail by fiber pull-out. Scanning electron microscopy was used to examine the fiber pull-out specimens after testing. Observations of the fiber showed that the failure mode at the fiber–matrix interface was complex. The predominant failure mode was fracture at the interface (or in some weak boundary layer). In some cases, cohesive failure of the fiber surface was observed, with the result that strips of material were torn from the fiber surface.  相似文献   

17.
Surface treatment of carbon fibers is essential to provide adequate interfacial interaction, and strength in carbon fiber/epoxy composites. The electrodeposition of a metallic copper coating on the carbon fiber surface has been examined as an alternative method to improve carbon fiber-epoxy interfacial properties. The wettability of the carbon fiber by the epoxy resin was improved as a result of copper electrodeposition. As a consequence, the adhesion between the carbon fiber and epoxy was also greatly improved by the surface electrolytic treatment used. The electrodeposition conditions affected significantly both wettability and adhesion phenomena. The electrolytic current had a strong effect on the interface performance. It was found that there was an intermediate electrolytic current, within the range used, which promoted better wetting and composite strength, compared with conventionally surface-oxidized carbon fibers.  相似文献   

18.
Unsized AS-4 carbon fibers were etched by RF plasma and then coated via plasma polymerization in order to enhance their adhesion to vinyl ester resin. Gases utilized for plasma etching were Ar, N2 and O2, while monomers used in plasma polymerization coating were acetylene, butadiene and acrylonitrile. Plasma etchings were carried out as a function of plasma power (30–70 W), treatment time (1–10 min) and gas pressure (20–40 mtorr). Plasma polymerizations were performed by varying the treatment time (15–60 s), plasma power (10–30 W) and gas pressure (20-40 mtorr). The conditions for plasma etching and plasma polymerization were optimized by measuring interfacial adhesion with vinyl ester resin via micro-droplet tests. Plasma etched and plasma polymer coated carbon fibers were characterized by SEM, XPS, FT-IR and α-Step, dynamic contact angle analyzer (DCA) and tensile strength measurements. In Part 1, interfacial adhesion of plasma etched and plasma polymer coated carbon fibers to vinyl ester resin is reported, while characterization results including tensile strength of carbon fibers are reported in Part 2. Among the treatment conditions, a combination of Ar plasma etching and acetylene plasma polymer coating provided greatly improved interfacial shear strength (IFSS) of 69 MPa, compared to 43 MPa obtained from as-received carbon fiber. Based on the SEM analysis of failure surfaces and load-displacement curves, the failure was found to occur at the interface between plasma polymer coating and vinyl ester resin.  相似文献   

19.
The fiber/epoxy resin adhesion increases after plasma treatment on ultrahigh molecular weight polyethylene (UHMW-PE) fibers. The surface modification of UHMW-PE monofilaments was studied using a combination of techniques: contact-angle measurements, SEM, and pullout tests. The results may be summarized as follows: Infiuenced by different plasma parameters and draw ratios of the monofilaments, the adhesion increases by at least four times by plasma treatment. Failure in the pullout tests involve rupture within a treated monofilament and the skin of it was peeled off; the degree of peeling-off is affected by different plasma treatment conditions and draw ratios of the monofilaments. There is only a slight decrease in the surface energy of the treated monofilaments with aging time. Ways of combining plasma etching with other chemical treatments to further improve the fiber/resin adhesion have also been studied. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Silica for epoxy molding compounds (EMCs) was coated via plasma polymerization using an RF plasma (13.56 MHz) as a function of the plasma power, gas pressure, and treatment time. The monomers utilized for the plasma polymer coatings were 1,3-diaminopropane, allylamine, pyrrole, 1,2-epoxy-5-hexene, allyl mercaptan, and allyl alcohol. The EMC samples were prepared from biphenyl epoxy resin, phenol novolac, triphenyl phosphine, and plasma polymer-coated silica, and the loading of silica was controlled to 60 wt%. The EMC samples were cured at 175°C for 4 h and subjected to Tg, CTE, and water absorption measurements. The adhesion of silica to epoxy resin was evaluated by measuring the flexural strength of EMC samples and the fracture surfaces were analyzed by SEM. Plasma polymer coatings were also characterized by FT-IR and coating thickness measurements. The plasma polymer coating of silica with 1,3-diaminopropane and allylamine enhanced the flexural strength of EMC samples (167 and 165 MPa), compared with the control sample (140 MPa), and exhibited a higher Tg, a lower CTE, and lower water absorption. The enhanced properties with 1,3-diaminopropane and allylamine plasma polymer coatings can be attributed to the amine functional groups in the plasma polymer coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号