首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyacrylamide and poly(acrylic acid) form a water-insoluble phase when solutions of the two having concentrations that are not too low are mixed. The insoluble complex contains nearly stoichiometric 1 : 1 ratios of acrylamide and acrylic acid. The phase behavior of the ternary system was studied as a function of the degree of neutralization, α, of poly(acrylic acid). The complex is not formed when α is high. The formation of the complex was studied by measurement of pH increases observed when poly(acrylic acid) was titrated with polyacrylamide to infer a degree of linkage, θ, between the two polymers. A Hill plot of the data showed that the association was cooperative when the molecular weight was high.  相似文献   

2.
The blends of epoxidized natural rubber (50 mol %) (ENR) and poly(ethylene-co-acrylic acid) (PEA) (6 wt %) are demonstrated to be partially miscible up to 50% by weight of PEA and completely miscible beyond this proportion. The miscibility has been confirmed by a DSC study which exhibits a single second-order transition (Tg) for the 30 : 70 and 50 : 50 (ENR : PEA) blends. For the 70 : 30 (ENR : PEA) blend, the Tg's shift toward an intermediate value but do not merge to form a single Tg, making the blend partially miscible. The miscibility has been assigned to the esterification reaction between – OH groups formed in situ during melt blending of ENR and – COOH groups of PEA. The occurrence of such reactions have been confirmed by UV and IR spectroscopic studies. The existence of a single phase of the blends beyond 50 wt % of PEA has been shown by SEM studies. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
Blends of poly(carprolactone)-poly(ethylene glycol) block polymer (PCE) with low-density polyethylene (LDPE) were prepared by extrusion followed by compression molding into thin film specimens. The morphology, thermal properties, degradation, and mechanical behavior of the blends were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), water immersion, static tensile testing, and dynamic mechanical analysis (DMA). The LDPE/PCE blends were immiscible for all chemical compositions. A LDPE/PCE (75/25 wt%) blend exhibited small reductions in weight and tensile strength after immersion in a buffer solution (pH = 5.0) at 50°C for extended periods of time. However, grafting maleic anhydride onto the LDPE/PCE blends improved the compatibility between the LDPE and PCE phases. Consequently, a 75/25 wt% blend of maleated LDPE/PCE exhibited significant losses in weight and tensile strength after immersion in the buffer solution. For comparison, blends of poly(caprolactone) (PCL) with LDPE were fabricated by similar techniques. The effect of compatibilizer on the degradation of LDPE/PCE and LDPE/PCL is discussed.  相似文献   

4.
Natural rubber (NR) was blended with chlorosulfonated polyethylene (CSM) with various formulation and blend ratios (NR/CSM: 80/20 –20/80, wt/wt). Rubber blends were prepared by using a two‐roll mill and vulcanized in a compression mold to obtain the 2 mm‐thick sheets. Tensile properties, tear resistance, thermal aging resistance, ozone resistance, and oil resistance were determined according to ASTM. Compatible NR/CSM blends are derived from certain blends containing 20–30% CSM without adding any compatibilizing agent. Tensile and tear strength of NR‐rich blends for certain formulations show positive deviation from the rule of mixture. Thermal aging resistance depends on formulation and blend ratio, while ozone and oil resistance of the blends increase with CSM content. Homogenizing agents used were Stuktol®60NS and Epoxyprene®25. Stuktol®60NS tends to decrease the mechanical properties of the blends and shows no significant effect on blend morphology. Addition of 5–10 phr of epoxidized natural rubber (ENR, Epoxyprene® 25) increases tensile strength, thermal aging resistance, and ozone resistance of the blends. It is found that ENR acts as a compatibilizer of the NR/CSM blends by decreasing both CSM particle size diameter and α transition temperature of CSM. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 127–140, 2006  相似文献   

5.
Blends of poly(methyl methacrylate) (PMMA) and poly(vinyl acetate) (PVAc) were prepared by mixing the polymers in the melt and in the absence of a solvent. PMMA was the major constituent of the blend. The polymer blends were tested, using various methods, to determine if they are compatible as solids. Data obtained from dynamic mechanical and DSC measurements show that, when they are mixed under given Brabender mix conditions, the blends exhibit properties characteristic of polymer pairs compatible as solids. If the mix conditions are altered, a two-phase system is evidenced. Using micrographs obtained by light microscopy in phase contrast as criteria, two companion blends containing PMMA/PVAc 80/20 would be classified as incompatible as solids because of the differences in refractive index of PMMA and PVAc. The micrographs also show that, in the system that would otherwise be listed as compatible, the PVAc domains appear to be relatively uniform in size and distribution through the PMMA matrix. In its companion blend, large, irregularly shaped particles of PVAc which are poorly dispersed in the PMMA matrix are evident.  相似文献   

6.
Thermal analysis (TGA and DTA) of samples of PAA, PVP, PAA–PVP complexes, containing different weight fractions of PAA and ternary polymer–metal–polymer complexes, were studied. The activation energy parameters for the thermal degradation were also calculated. The study of the effect of FeCl3, NiCl2, and Ni(NO3)2 on the TGA and DTA curves of the complexes showed that the decompositions are dependent on the concentrations and the nature of the metal ions. The DTA traces of PAA–PVP complex containing FeCl3, NiCl2, and Ni(NO3)2 showed that the treatment of the complex with these metal ions causes considerable changes in the thermal decomposition of PAA–PVP complex. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4049–4057, 2006  相似文献   

7.
Specimens of poly(vinylidene fluoride) (PVDF)–poly(methyl methacrylate) (PMMA)–polystyrene (PS) polyblends with different weight percentage ratios of the three polymers were prepared with the solution cast technique. The effect of γ irradiation on the Vicker's microhardness was studied. Among the three pure polymers, PVDF, PMMA, and PS, the γ irradiation imparted crosslinking in PVDF, thereby causing radiational hardening. In the cases of PMMA and PS, the effect of irradiation exhibited a predominance of both the scissioning and crosslinking processes in different ranges of doses. Moreover, at a dose of 5 Mrad, in both PMMA and PS, maximum radiational crosslinking was observed. The effect of γ irradiation seemed to stabilize beyond 15 Mrad in PVDF and beyond 20 Mrad in PMMA and PS. Microhardness measurements on ternary blends of PVDF, PMMA, and PS revealed that the blend with low contents of PMMA, that is, up to 5 wt %, yielded softening, whereas increasing the content of PMMA beyond 5 wt % produced a hardened material because of radiational crosslinking, and a higher content of PMMA in the blend facilitated this crosslinking. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3107–3111, 2004  相似文献   

8.
We report an electrically conducting polyaniline–poly(acrylic acid) blend coatings prepared by mixing the emeraldine base (EB) form of polyaniline (PANI) and poly(acrylic acid) (PAA) aqueous solution. The samples show a moderate electrical conductivity σ. If they are immersed in an HCl aqueous solution, the conductivity of the samples is increased by two or three orders of magnitude and their thermal stability is also improved. Optical transmittance spectra show a complete protonation of PANI–PAA blends after immersion in HCl aqueous solution. Fourier transform infrared spectroscopy studies indicate that the better thermal stability of σ could come from the more stable protonated imine nitrogen ions. A low percolation threshold phenomenon is observed in PANI–PAA blends, from a strong interaction between the carboxylic acid groups of PAA and the nitrogen atoms of PANI. © 1998 SCI.  相似文献   

9.
The novel block copolymer poly(benzyl glutamate) (PBLG)–polomamer–PBLG were synthesized from glutamic acid and poloxamer in six steps with three different molecular weights, and another new block copolymer, poly(glutamic acid) (PGA)–poloxamer–PGA, was obtained by the benzyl deprotection of PBLG–poloxamer–PBLG. The obtained compounds were characterized by IR spectroscopy, gel permeation chromatography, and 1H‐NMR. The in vitro biological degradation and water absorption of PBLG showed that a greater proportion of PBLG in the copolymer led to a slower degradation and weaker water absorption, so the speed of degradation and water absorption could be adjusted through adjustment of the ratio of poloxamer. Both PBLG–poloxamer–PBLG and PGA–poloxamer–PGA exhibited lower cytotoxicity and good biocompatibility in the methyl thiazolyl tetrazolium (MTT) assay. The results show that both block polymers are promising as drug‐carrier materials. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
This research focuses on the synthesis of ethyl and ethoxy substituted polyaniline with poly(styrenesulfonic acid) comprising a poly(o‐phenetidine)–poly(styrenesulfonic acid) [P(O? P)‐PSSA] and poly(2‐ethylaniline)–poly(styrenesulfonic acid) [P(2‐E)‐PSSA]. The complexes P(O? P)‐PSSA and P(2‐E)‐PSSA were prepared by chemical polymerization of monomer (o‐phenetidine, 2‐ethylaniline) with PSSA using an oxidant of ammonium persulfate in 1M HCl solution; polyaniline (PANI), poly(2‐ethylaniline) (P2E), poly(o‐pheneditine) (POP), and polyaniline‐poly(styrenesulfonic acid) (PANI‐PSSA) also were prepared by chemical polymerization to be the reference samples. The products were characterized by IR, VIS, EPR, water solubility, elemental analysis, conductivity, SEM, and TEM. IR spectral studies shown that the structure of P(2‐E)‐PSSA and P(O? P)‐PSSA complexes is similar to that of polyaniline. EPR and visible spectra indicate the formation of polarons. The morphology of the blend was investigated by measured SEM and TEM, indicating the conducting component and electrically conductive property of the polymer complexes. The pH value for deprotonation [pH ≥ 9.5 for P(2‐E)‐PSSA and pH ≥ 8.0 for P(O? P)‐PSSA] are higher than that of corresponding HCl salts, indicating an intimate interaction between polymer chains. Elemental analysis results show that P(O? P)‐PSSA has a nitrogen‐to‐sulfur ratio of ~52%, larger than that for P(2‐E)‐PSSA, ~41%. The conductivity of the complexes is around 10?2S/cm, and the solubility of P(2‐E)‐PSSA and P(O? P)‐PSSA in water is 2.9 and 1.9 g/L, respectively. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1198–1205, 2005  相似文献   

11.
Mixtures of two compatible polymers, poly(vinyl chloride) and poly(acrylonitrile-co-butadiene) containing 40 percent acrylonitrile, can be compatible with poly(vinylidene chloride-co-vinyl chloride), which is incompatible and partially compatible respectively with these two polymers. The crystalline melting temperature and relative heat of fusion of poly(vinylidene chloride-co-vinyl chloride) in blends are higher than those in the pure component. This is attributed to greater ordering of the polymer chains in the crystalline phases of the blends. Replacing the rubber by poly(acrylonitrile-cobutadiene) containing 30 percent acrylonitrile, shows that these three polymers, in which each pair is incompatible or at most partially compatible, also form compatible ternary blends. The crystalline melting temperature is higher and relative heat of fusion lower than those in the pure component. This is attributed to dissolving of parts of the polymer chains originally located in the crystalline phases in the amorphous phases of the blends.  相似文献   

12.
Blends of poly(methyl methacrylate) (PMMA) and poly(vinyl acetate) (PVAc) were prepared by mixing the polymers in the melt and in the absence of a solvent. PMMA was the major constituent of the blend. Traces of gel permeation chromatograms showed that the starting materials retain their polymeric character after Brabender processing. Data obtained from notched Izod impact strength tests at 23°C showed that blends may exhibit values ranging from about 0.3 to 0.9 ft-lb/in. notch. Differences in mix conditions afford blends which, from a phenomenologic viewpoint, consist of a mixture of two glassy polymers or of a rubbery polymer dispersed in a glassy matrix. Micrographs of a crack pattern in companion blends consisting of PMMA/PVAc 85/15 are consistent with impact strength test results.  相似文献   

13.
The miscibility, crystallization kinetics and crystalline morphology of a new system of poly(vinylidene fluoride)/poly(?‐caprolactone)‐block‐poly(dimethylsiloxane)‐block‐poly(?‐caprolactone) (PVDF/PCL‐b‐PDMS‐b‐PCL) triblock copolymer were investigated by a variety of techniques. The miscibility and phase behaviour of PVDF/PCL‐b‐PDMS‐b‐PCL were studied by determination of the melting point temperature, crystallization kinetics and Fourier transform infrared (FTIR) mapping. Chemical imaging was used as a new technique to characterize the interaction of polymer blends in crystalline morphology. The results demonstrate the existence of characteristic peaks of both PVDF and PCL in the chosen crystalline area. The crystalline structures of PVDF were affected by the PCL‐b‐PDMS‐b‐PCL triblock copolymer and facilitate the formation of the β polymorph which was illustrated by FTIR analysis. The β crystal phase fraction increases significantly on increasing the composition of the PCL‐b‐PDMS‐b‐PCL triblock copolymer. In addition, confined crystallization of PCL within PVDF inter‐lamellar and/or inter‐fibrillar regions was confirmed through polarizing optical microscopy, wide‐angle X‐ray diffraction and small‐angle X‐ray scattering analysis. © 2019 Society of Chemical Industry  相似文献   

14.
Blends of poly(vinyl chloride) (PVC) with polycaprolactone (PCL) of different compositions were prepared from solutions in tetrahydrofuran (THF). The dried blends were stretched at different temperatures above the glass transition, and the birefringence and mechanical properties were studied. It is shown that the birefringence of PVC and the 75/25 PVC/PCL blend follows an affine deformation scheme with a decreasing number of segments with deformation. The 50/50 PVC/PCL blend shows a complex orientation behavior because of the presence of crystallinity in the PCL phase. The mechanical properties of the blends are shown to increase with orientation, and the aggregate model is acceptably followed by the amorphous oriented blends.  相似文献   

15.
The melting, crystallization and dynamic mechanical behaviour of blends of bacterially produced poly[D (–)-3-hydroxybutyrate] (PHB) and poly[D (–)-3-hydroxyvalerate] (PHV) have been investigated. Results showed that melt-pressed PHB–PHV blends contained phase-separated domains in the melt which subsequently crystallized as PHB and PHV type spherulites respectively. The two melting regions detected by DTA related to separate melting of PHB and PHV crystallites, which were almost unaffected by the blend composition. The mechanical behaviour of a random copolymer of PHB/HV was compared with that of a blend of almost the same composition, and found to be markedly different.  相似文献   

16.
Binary blends of the sulfonated poly(ether ether ketone) (SPEEK)–poly(ether imide) (PEI) and SPEEK–polycarbonate (PC), and ternary blends of the SPEEK–PEI–PC, were investigated by differential scanning calorimetry. SPEEK was obtained by sulfonation of poly(ether ether ketone) using 95% sulfuric acid. From the thermal analysis of the SPEEK–PEI blends, single glass transition temperature (Tg) was observed at all the blend composition. For the SPEEK–PC blends, double Tgs were observed. From the results of thermal analysis, it is suggested that the SPEEK–PEI blends are miscible and the SPEEK–PC blends are immiscible. Polymer–polymer interaction parameter (χ12) of the SPEEK–PEI blends was calculated from the modified Lu and Weiss equation, and found to range from −0.011 to −0.825 with the blend composition. For the SPEEK–PC blends, the χ12 values were calculated from the modified Flory–Huggins equation, and found to range from 0.191 to 0.272 with the blend composition. For the SPEEK–PEI–PC ternary blends, phase separation regions that showed two Tgs were found to be consistent with the spinodal curves calculated from the χ12 values of the three binary blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2488–2494, 2000  相似文献   

17.
Melt-mixed blends of isotactic poly(butene-1) (PB) with chlorinated polyethylene (containing 48 wt % Cl) (CPE) were studied in the complete composition range. Phase contrast, polarizing, and scanning electron microscopy revealed that the blend is heterogeneous. The results were confirmed by the dynamic mechanical technique and differential scanning calorimetry. The latter technique indicated also that CPE does not influence the crystallinity of PB. Tensile behavior of the blends was good, especially at low CPE contents. The results were analyzed using phenomenological mechanics models. From the correlation obtained one can conclude that the blends are mechanically compatible. Limiting oxygen index data were also determined, to characterize the flammability behavior of the blends in the complete composition range.  相似文献   

18.
Blends of poly(ethylene terephthalate) (PET) and poly(ethylene octene) (POE) were prepared by melt blending with various amounts of trimethylolpropane triacylate (TMPTA). The mechanical properties, phase morphologies, and gel fractions at various absorbed doses of γ‐irradiation have been investigated. It was found that the toughness of blends was enhanced effectively after irradiation as well as the tensile properties. The elongation at break for all studied PET/POE blends (POE being up to 15 wt %) with 2 wt % TMPTA reached 250–400% at most absorbed doses of γ‐irradiation, approximately 50–80 times of those of untreated PET/POE blends. The impact strength of PET/POE (85/15 wt/wt) blends with 2 wt % TMPTA irradiated with as little as 30 kGy absorbed dose exceeded 17 kJ/m2, being approximately 3.4 times of those of untreated blends. The improvement of the mechanical properties was supported by the morphology changes. Scanning electron microscope images of fracture surfaces showed a smaller dispersed phase and more indistinct inter‐phase boundaries in the irradiated blends. This indicates increased compatibility of PET and POE in the PET/POE blends. The changes of the morphologies and the enhancement of the mechanical properties were ascribed to the enhanced inter‐phase boundaries by the formation of complex graft structures confirmed by the results of the gelation extraction and Fourier Transform Infrared analyses. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) was blended with poly(lactic acid) (PLA) with various reactive processing agents to decrease its brittleness and enhance its processability. Three diisocyanates, namely, hexamethylene diisocyanate, poly(hexamethylene diisocyanate), and 1,4‐phenylene diisocyanate, were used as compatibilizing agents. The morphology, thermomechanical properties, and rheological behavior were investigated with scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, tensile testing, dynamomechanical thermal analysis in torsion mode (dynamic mechanical analysis), and oscillatory rheometry with a parallel‐plate setup. The presence of the diisocyanates resulted in an enhanced polymer blend compatibility; this led to an improvement in the overall mechanical performance but did not affect the thermal stability of the system. A slight reduction in the PHBV crystallinity was observed with the incorporation of the diisocyanates. The addition of diisocyanates to the PHBV–PLA blend resulted in a notable increase in the final complex viscosity at low frequencies when compared with the same system without compatibilizers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44806.  相似文献   

20.
The aim of this work was to better understand the performance of binary blends of biodegradable aliphatic polyesters to overcome some limitations of the pure polymers (e.g., brittleness, low stiffness, and low toughness). Binary blends of poly(ε‐caprolactone) (PCL) and poly(lactic acid) (PLA) were prepared by melt blending (in a twin‐screw extruder) followed by injection molding. The compositions ranged from pure biodegradable polymers to 25 wt % increments. Morphological characterization was performed with scanning electron microscopy and differential scanning calorimetry. The initial modulus, stress and strain at yield, strain at break, and impact toughness of the biodegradable polymer blends were investigated. The properties were described by models assuming different interfacial behaviors (e.g., good adhesion and no adhesion between the dissimilar materials). The results indicated that PCL behaved as a polymeric plasticizer to PLA and improved the flexibility and ductility of the blends, giving the blends higher impact toughness. The strain at break was effectively improved by the addition of PCL to PLA, and this was followed by a decrease in the stress at break. The two biodegradable polymers were proved to be immiscible but nevertheless showed some degree of adhesion between the two phases. This was also quantified by the mechanical property prediction models, which, in conjunction with material property characterization, allowed unambiguous detection of the interfacial behavior of the polymer blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号