首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Bombyx mori silk fibers were chemically modified by acylation with aromatic acid anhydrides, such as phthalic and o-sulfobenzoic anhydrides. We examined the reactivity of these modifying agents toward silk fibers, the physical and thermal properties, and the dyeing behavior with acid and cationic dyes. The o-sulfobenzoic anhydride was more reactive toward silk fibroin than phthalic anhydride. The amount of both basic and acidic amino acid residues decreased after modification with aromatic acid anhydrides. The moisture regain of silk treated with phthalic anhydride remained almost unchanged, while that of the samples modified with o-sulfobenzoic anhydride increased linearly as the weight gain increased. Chemically modified silk fabrics showed improved crease recovery behavior, even though phthalic anhydride seemed more effective at comparatively low weight gain. The modification of silk with o-sulfobenzoic anhydride caused a drastic a reduction of acid dye uptake and enhanced the affinity of silk for cationic dye. Silk fibers did not show any significant change in thermal behavior, regardless of the modification with o-sulfobenzoic anhydride. Silk fibers modified with phthalic anhydride showed on differential scanning calorimetry (DSC) curves a minor and broad endothermic peak at around 210°C, attributed probably to the breaking of the crosslinks formed between adjacent fibroin molecules.  相似文献   

2.
Structural characteristics and physical properties of methyl methacrylate-grafted silk fiber from Bombyx mori were studied by X-ray diffractometry, differential scanning calorimetry (DSC), thermogravimetry, and scanning electron microscopy. Methyl methacrylate (MMA)-grafted silk fiber with a grafting yield of more than 30% showed two endothermic peaks at 320°C and 390–410°C, which are attributed to the thermal decomposition of silk fibroin and MMA polymer filled in the fiber, respectively. These DSC results indicate that MMA-grafted silk fiber showed a poor compatibility in the relation between the silk fibroin molecules and MMA polymer. The weight of the MMA-grafted silk fiber decreased as observed at 160°C on the thermogravimetric thermograms due to the evaporation of water from the sample with increasing graft yield. The crystalline structure of MMA-grafted silk fiber remained unchanged regardless of MMA grafting. Taking into account the X-ray diffraction patterns and the increasing graft yield with reaction time, it is assumed that the graft chains of MMA polymer have penetrated into a weak aggregate region and not in the crystalline region of silk fibroin.  相似文献   

3.
以丝素蛋白为原料,以六氟异丙醇为溶剂,采用超临界流体强制分散溶液(SEDS)工艺制备了丝素纳米颗粒。单因素实验考察了压力、溶液浓度、溶液流速和CO2流速等因素对丝素纳米颗粒平均粒径分布的影响,并通过Zeta电位、HS-GC、FTIR、XRD和DSC等技术手段对制备的丝素纳米颗粒进行了表征。动态激光光散射仪检测结果表明:随压力、溶液浓度和流速的增大,丝素纳米颗粒平均粒径增大;随CO2流速的增大,丝素纳米颗粒平均粒径减小,最小达到298nm。丝素纳米颗粒Zeta电位为?39mV。HS-GC表明丝素纳米颗粒有机溶剂残留量为20μg/L。FTIR表明经SEDS工艺处理后丝素化学结构和官能团不会发生变化。XRD和DSC显示经SEDS工艺处理后丝素内部分子结构发生重排,由无规则卷曲向β折叠转换。  相似文献   

4.
Wide-angle X-ray diffraction studies of physically and chemically treated silk fibers like bivoltine mulberry silk and tassar silk were carried out to evaluate their crystal size, lattice distortion, and minimum enthalpy, as these determine the properties of silk fibers. The results are also compared with tenacity measurement. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Changes in physical properties of silk fibers, grafted with methacrylonitrile (MAN), were investigated as a function of the weight gain. The weight gain increased steadily during the first 60 min of reaction and gradually attained an equilibrium value (60%) after about 4 h. The initial tensile resistance of silk fibers decreased by MAN grafting. The crystalline structure of silk fibers remained unchanged, regardless of MAN grafting, however. a minor and broad peak appeared in the X-ray diffraction curves of MAN-grafted silk fibers with a weight gain of 60%, corresponding to the unoriented MAN polymer attached inside the fibers. Molecular orientation of silk fibroin chains in the crystalline regions, evaluated from X-ray diffraction curves, did not change significantly, while both birefringence and isotropic refractive index decreased as the weight gain increased, implying that MAN polymer attached preferentially to the amorphous and not to the crystalline regions. Dynamic vis-coelastic measurements showed that the position at which the E′ value began to decrease shifted to a lower temperature as the weight gain increased. These findings suggest that the thermal movement of silk fibroin molecules was accelerated by the presence of the poly-MAN chains attached to the amorphous regions of silk fibroin fibers. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
To investigate the volume, size, and number of microvoids in mulberry and tussah silk fibers, stannic acid gel was used as a contrasting medium to the small-angle X-ray scattering (SAXS). The influence of the stannic acid treatment on the structure of silk fibers was first investigated by using the wide-angle X-ray diffraction prior to characterization of the microvoids. The changes in crystallite size and degree of orientation with increasing stannic acid gel fraction in fibers are investigated, and it was found that the stannic acid treatment does not cause serious changes in crystallite size and degree of orientation. The changes in crystallinity indices were observed when the volume fractions of stannic acid gel in the fibers exceeded about 10%. Thus, it was confirmed that the structure of silk fibers was retained in the region of the stannic acid gel fraction less than 10%. SAXS measurements revealed that the number and the fraction of the microvoids are larger, while the sizes of the microvoids are smaller, for the mulberry silk fibers compared with the tussah silk fibers. The fraction macrovoids, however, is considered to be larger for the tussah silk fibers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 363–367, 1999  相似文献   

7.
Silks have been widely used as biomaterials due to their biocompatibility, biodegradability, and excellent mechanical properties. In the present work, native spider silk was used as organic template for controlled nucleation of hydroxyapatite (HA) nano-coating that can act as biomimetic interface. Different bio-inspired neutralization methods and process parameters were evaluated to optimize the silk functionalization. The morphology and chemical composition were investigated by scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis and mechanical properties were studied through tensile tests. Results showed that the optimized protocol enabled a controlled and homogeneous nucleation of apatite nano-crystals while maintaining silk mechanical performances after mineralization. This study reports the optimization of a simple and effective bio-inspired nucleation process for precise nucleation of HA onto spider silk templates, suitable to develop high-performance hybrid interfaces for bone tissue engineering. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48739.  相似文献   

8.
In this study, a chitosan nanoparticle dispersion solution as a novel multifunctional agent was developed to modify Antheraea pernyi silk. An ionization gelation methodology with chitosan and sodium tripolyphosphate (STPP) was used to prepare the chitosan nanoparticle solution, and then, Fourier transform infrared spectra, laser particle size analysis, and transmission electron microscopy (TEM) were used to characterize the structure and size distribution of the chitosan nanoparticles. The peaks at 3390.7, 1633.7, 1538.2, and 1258.1 cm−1 revealed the reaction between the chitosan and STPP molecules in the chitosan nanoparticles. The average size of the nanoparticles in the aqueous dispersion solution was approximately 20 nm. TEM images clearly showed the round spherical morphology and the distribution of the particles in the solid state. The obtained chitosan nanoparticle dispersion solution was then applied to treat silk filaments and fabric. The results indicate that the surface of the chitosan‐nanoparticle‐treated A. pernyi silk fiber was rougher than that of the chitosan‐treated and untreated ones, and a higher specific surface was achieved. In addition, the antibacterial activity, breaking strength, and wrinkle‐resistance properties of the chitosan‐nanoparticle‐treated A. pernyi silk fabric were also enhanced. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Flexible silk fibroin gel‐like films with microporous morphology were prepared from B. mori silk fibroin fibers directly solubilized in formic acid/CaCl2 solvent. These films were characterized by several analysis techniques to determine the structure and properties of films. The pore size of gel‐like films can be adjusted through SF concentration and Ca ions concentration. The controllable pore size in gel‐like films was grew from 3–5 μm to 100 μm under the increase of fibroin concentration from 1.0 wt % to 8.0 wt %. At the same time, the water content of silk fibroin gel‐like film decreased from 83.5 ± 3.4% to 68.2 ± 2.6%. With increasing Ca ions contents from 2.0 wt % to 10.0 wt % in dissolution process, the pore size and water content of silk fibroin gel‐like films grew larger, especially its water content values reached 86.2 ± 4.0% at 10.0 wt % Ca ions concentration. At wet condition, the gel‐like film with β‐sheet structure showed higher breaking stress (4.26 ± 0.31 MPa) and elongation (45.45 ± 15.79%) at 8.0 wt % concentration. With the preparation method, the membrane is hydrophilic and the pore size is adjustable, which contributes to high toughness and favorable cell growth environment, suggesting that these silk fibroin gel‐like films can be a potential candidate scaffold for biomedical applications, such as wound dressing, facial mask, contact lenses, etc. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41842.  相似文献   

10.
The growth of silver bromide nanoparticles on silk yarn was achieved by sequential dipping in alternating bath of potassium bromide and silver nitrate under ultrasound irradiation. The effect of concentration, power of ultrasound irradiation and the numerous of sequential dipping steps in growth of the AgBr nanoparticles on silk yarn were studied. The samples were characterized with powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and Inductive Coupled Plasma (ICP). The lower average size and the higher crowded AgBr nanoparticles upon silk yarn are the result of using ultrasound irradiation.  相似文献   

11.
A porous coordination polymer, Zn3(BTC)2·12H2O (Zn-BTC) upon silk yarn, has been synthesized under ultrasound irradiation of identical reaction mixtures of Zn(II) and H3BTC (BTC = 1,3,5-benzenetricarboxylate). Effects of temperature, sequential dipping steps and sonication on the growth of Zn-BTC upon silk yarn were investigated. These systems depicted a decrease in the particles size accompanying a decrease in the sequential dipping steps. Results showed a decrease in the particles size as decreasing frequency of ultrasound irradiation. The antimicrobial activity of Zn-BTC upon fiber was tested against the Gram positive strain Micrococcus sp. and Gram negative bacterial strain Escherichia coli. The samples were characterized with X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy spectra and scanning electron microscopy. XRPD analyses indicated that the prepared Zn-BTC nanostructures on silk fibers were crystalline.  相似文献   

12.
Wide-angle X-ray diffraction studies of crossbreed silk fibers and fibers annealed at various temperatures for different periods of time were carried out to evaluate the crystal size and lattice distortion parameters, as these determine the properties of silk fibers. Also, minimum enthalpy for the formation of these fibers has been estimated and compared. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
This study deals with the analysis of structure, physical properties, and dyeing behavior of silk fibers with different filament sizes. Fine and coarse silk fibers were obtained from Akebono and Ariake cocoon varieties, respectively. Both samples exhibited a fairly similar x-ray crystallinity, while the degree of molecular orientation increased with decreasing the fiber size. Tensile strength and energy of fine silk fibers were significantly higher, while elongation at break did not change in relation to the fiber size. Fine silk fibers exhibited a slightly higher thermal stability, as shown by the upward shift of both the DSC decomposition temperature and the TMA final extension step at above 300°C. The TGA and DMA (E″) patterns remained unchanged regardless of fiber size. The amino acid analysis confirmed the absence of any difference of chemical structure between fine and coarse silk fibers, the content of acidic, basic, and other characteristic amino acid residues being exactly the same. Accordingly, both samples adsorbed the same amount of hydrochloric acid. Ex-haustion dyeing tests with various direct, acid, and reactive dyes showed the occurrence of appreciable differences in the perceived color between fine and coarse silk fibers. The size of color difference was quantitatively evaluated by reflectance measurements and discussed in relation to silk fiber morphology, structure, as well as dyeing conditions. The kinetics of diffusion of two model dyes was not significantly affected by the different fiber size and structure. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
The structural characteristics and physical properties of epoxide-treated tussah silk fibers from Antheraea pernyi silkworm are discussed in relation to the increasing weight gain values. Ethyleneglycol diglycidylether (E) and glycerin diglycidylether (G) were used as modifying agents. The noticeably high weight gain values (about 140%) obtained were attributed to the catalytic effect of SCN? anion absorbed by the fibers during the pretreatment under reduced pressure conditions. The amino acid analysis showed that epoxide G exhibited a slightly higher reactivity toward tyrosine, while arginine preferably reacted with epoxide E. The peak of loss modulus (E″) determined by dynamic viscoelastic measurements became broader and its position linearly shifted to lower temperature when the weight gain increased, and a minor peak appeared in the low-temperature region below 50°C. Differential scanning calorimetry (DSC) thermograms showed that the position of the decomposition peak of modified silk fibers shifted to lower temperature with increasing weight gain values. The minor and broad endothermic peaks, appearing in the reference sample at about 234 and 290°C, disappeared by epoxide treatment. X-ray diffraction patterns of tussah silk fibers suggested that the epoxide treatment does not affect directly the crystalline regions but causes a decrease of molecular orientation in the amorphous regions. Both briefringence (Δn) and isotropic refractive index (niso) of tussah silk fibers decreased by the reaction with epoxides, although with different rate and extent, confirming the decrease of average molecular orientation. The extent of decrease of strength and elongation depends on the kind of epoxide and on the weight gain value. Epoxide-treated tussah silk fibers did not show significant changes of surface characteristics as the weight gain values attained up to 60%.  相似文献   

15.
The objective of this study was to investigate the physical properties of silk fibers modified with dibasic acid anhydrides. These are potentially attractive modifying agents to reduce the rate of photoyellowing of silk during and following UV irradiation. Several analytical techniques were employed, which included the measurement of the basic mechanical properties (tensile strength and elongation at break), equilibrium regain, amino acid analysis, dynamic viscoelastic measurements, X-ray diffractometry, and scanning electron microscopy (SEM). The succinylated silk fibers, which have been conditioned under different relative humidity atmospheres, always exhibited slightly higher equilibrium regain values than those of equivalently conditioned glutarylated silks. The amount of the basic amino acid residues slightly decreased following modification with both succinic and glutaric anhydrides. The birefringence values and the isotropic refractive indices decreased only slightly, which suggests that the fine structure of the treated silk fibers was not significantly altered. The X-ray diffraction curves demonstrated that no changes in the crystalline structure were induced by reaction with dibasic acid anhydrides. The tensile properties of the modified silks remained more or less unchanged. Only the initial tensile resistance of glutarylated silks in the dry state significantly decreased. The dynamic viscoelastic behavior of modified silk fibers was characterized by a reduced thermal stability. In fact, the onset temperature of the prominent E peak corresponding to the molecular movement shifted to lower values. The surfaces of modified silk fibers were as smooth as that of the untreated control sample. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
In this paper, electron beam (EB) radiation-induced crosslinking of silk fibers by triallyl isocyanurate was accomplished for the first time by exposing the silk fabric in an inert atmosphere. The effect of EB dose (100–300 kGy) on the degree of crosslinking was found to show correlation with sol–gel contents and confirmed by Charlesby–Pinner plot along with their chemical stability in different solvents. Uniform and homogeneous distribution of particles on the fiber surface was observed under a scanning electron microscope, and elemental composition of those particles was detected similar to the silk by energy-dispersive X-ray spectra. Chemical changes occurred due to EB irradiation and crosslinking in the silk polymer was affirmed by attenuated total reflectance–Fourier transform infrared spectroscopy. From the thermogravimetric analyses, the thermal stability of the irradiated fibers with respect to weight loss was found to have increased from 17 to 32% at higher temperature range. The changes in mechanical property, stiffness, water contact angle, and degree of crosslinking of silk proportionately change with respect to the EB dose. However, 200 kGy EB dose was found optimum based on physical, chemical, and thermal properties. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47888.  相似文献   

17.
Domestic (Bombyx mori) and wild (tussah, Antheraea pernyi) silk fabrics were treated with diluted NaOH solutions by the pad/batch method. The equillbrium moisture regain of tussah silk fibers increased steadily with alkaline treatment, while that of B. mori did not change. B. mori tensile strenght and elongation at break were slightly impaired. The average molecular orientation and crystallinity of both kinds of silk remained unchanged. Differential scanning calorimetry (DSC) and thermomechanical analysis(TMA) showed that the thermal behavior of B. mori silk was almost unaffected, while that of tussah exhibited slight changes in the temperature range 250–300°C. By dynamic mechanical measurements (DMA) it was elucidated that both storage and loss moduli of B. mori silk fibers decreased following NaOH treatment. On the other hand, tussah silk exhibited a noticeable upward shift of the major loss peak. Alkali-treated tussah silk fibers, dyed with an acid dyestuff, attained a lower degree of dye-bath exhaustion. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Tussah silk fibroin was chemically modified by acylation with aliphatic, aromatic, and hydrophobic acid anhydrides. The tussah silk fibers were pretreated by immersing them in a lithium thiocyanate (LiSCN) solution and then acylated in dimethylformamide (DMF) at elevated temperatures. Using this method, acylated tussah silk fibers with weight gains of 8–22% could be obtained. The pretreatment with LiSCN was necessary to promote the acylation. Without it, the reaction did not proceed. The optimum temperature and reaction time of the pretreatment was 55°C and 60 min, respectively. When examining the physical properties and the thermal behavior of both pretreated and acylated tussah silk, it was found that the mechanical properties and the position of the major DSC endothermic peak remained unchanged, regardless of pretreatment and acylation. The moisture regain of the pretreated tussah silk increased slightly while the moisture regain of the acylated silk decreased linearly with increasing weight gain. The chemical modification allows for a wide control of the tussah silk fiber's properties, making it possible to use tussah silk for the development and production of novel textile and biomaterials. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 382–391, 2000  相似文献   

19.
丝素蛋白/聚丙烯酸共混膜仿生合成羟基磷灰石   总被引:1,自引:0,他引:1  
将丝素蛋白(SF)与聚丙烯酸(PAA)共混,制备丝素蛋白/聚丙烯酸(SF/PAA)共混膜;然后将此共混膜进行改性及矿化处理后,放置于(37±0.5)℃人体仿生液中24h,诱导合成丝素蛋白/羟基磷灰石(SF/HA)复合材料.利用傅里叶红外(FTIR)、X-射线衍射(XRD)、环境扫描电镜(ESEM)以及X射线能谱(EDX...  相似文献   

20.
Four Indian varieties of silk viz., Mulberry, Tasar, Eri, and Muga, have been investigated by x-ray diffraction and infrared spectroscopy. The hydrolysis for Mulberry was carried out using 6N HCI at 40°C, whereas the other wild varieties of silk were hydrolyzed partially using 8N HCI at 40°C. The x-ray order factor, IR crystallinity index, and crystallite size have been determined for control, 48-hr hydrolysates, and (48 + 48)-hr hydrolysates. The lateral order improvement need not be associated with selective dissolution of amorphous region. This was further varified by short duration hydrolysis. A sort of recrystallization process could be attributed to order improvement. The results are discussed to understand the fine structure of the crystalline region of the fibroin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号