首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 67 毫秒
1.
《塑性工程学报》2016,(6):162-166
研究了TC4钛合金不同应变速率和降温速率时降温压缩过程的流变行为,发现降温压缩瞬时温度下的材料流动应力低于相同温度下的恒温压缩流动应力。经过XRD检测方法分析不同热和变形历史条件下试样的相含量得出,虽然降温和变形过程都促进了β相向α相的转变,但由于降温压缩试样的初始温度较高,变形后其β相的含量高于相同温度的恒温压缩试样,导致降温压缩流动应力较低。通过引入降温影响因子改进了混合物法则,准确地表征了降温过程流动应力与相含量之间关系。  相似文献   

2.
利用Gleeble-3500热模拟试验机进行等温恒应变速率热压缩实验,研究了TC4钛合金在温度800~950℃、应变速率0.001~10s-1条件下的流动软化行为。研究发现随变形温度降低和应变速率增大TC4钛合金的流动软化程度增大,且800~850℃、应变速率1~10s-1变形时的流动软化主要是塑形流动失稳引起的,温度900~950℃、应变速率0.001~0.1s-1条件变形时,流动软化主要是片状α相的等轴化引起的。引入应变对材料常数α、n、A和Q的影响,建立了考虑应变的TC4钛合金Arrhenius本构方程,建立的本构模型精度较好,在800℃、850℃和10s-1条件以及在900℃、950℃和0.1s-1条件下,模型平均绝对误差分别为4.2%和4.3%。TC4钛合金的平均变形激活能为403kJ/mol,平均应变速率敏感指数为0.26。  相似文献   

3.
采用Gleeble-1500D热-力学模拟机,将不同晶粒尺寸的TC4试样分别以0、10、30、50和70℃/s的升温速度加热至700℃进行单向压缩并得到流变应力曲线图,结合SEM、TEM等研究了电流作用下TC4钛合金高温压缩过程中流变应力的变化及影响因素。结果表明,无电流时流变应力超过1000 MPa,在电流作用下可降至600 MPa以下。小电流下TC4试样发生动态再结晶,应力随应变快速增大到应力峰值,后又快速下降至稳定状态;大电流下发生动态回复,局部有动态再结晶,无应力峰值,应力最大值低于400 MPa,且电流越大,β相转变为α相的相变越完全。分析认为,TC4钛合金的流变应力受电流大小、动态再结晶和相变的共同影响,电流促进动态再结晶和相变并降低流变应力。  相似文献   

4.
在Gleeble-3800热模拟试验机上对TC4钛合金进行单向压缩实验,研究该合金在压缩量为50%、 温度为700~900℃、 应变速率为0.001~1 s-1条件下的高温变形行为.用金相显微镜观察TC4钛合金高温压缩实验后的微观组织,研究TC4钛合金的动态再结晶过程,分析了影响TC4钛合金层状组织动态球化的因素.用三...  相似文献   

5.
TC4-DT钛合金的热变形行为研究   总被引:1,自引:1,他引:1  
利用Gleeble-1500型热模拟压缩试验机,研究了TC4-DT合金在750~950℃、应变速率为0.001~10 s-1、变形量为50%条件下的热变形行为,分析了该合金的流变应力变化特点及显微组织演变规律,建立了该合金的Arrhenius型本构方程.结果表明:流变应力随变形温度降低及应变速率增大而升高;变形温度与应变速率对TC4-DT合金显微组织影响显著,随着变形温度的升高及应变速率的降低,片层组织球化现象越明显;应变速率敏感指数随变形温度的升高而增大;在本实验条件下,TC4-DT合金的热变形激活能为603.51 kJ/mol,表明该合金的热变形主要是由高温扩散以外的过程控制,认为有动态再结晶发生.  相似文献   

6.
置氢TC4钛合金室温变形行为研究   总被引:1,自引:0,他引:1  
通过压缩试验研究了置氢TC4合金的室温变形行为,采用OM、TEM、XRD等分析手段研究了氢处理对TC4钛合金室温组织和变形机制的影响.结果表明,氢作为β相稳定化元素,改善了TC4钛合金淬火的亚稳相结构,促进了斜方α″马氏体和体心β相的生成.氢含量0.45%(质量分数,下同)时,合金中以α″相为主,变形方式为孪晶变形,变形能力提高幅度较小;氢含量超过0.59%时,合金中保留了大量β相,变形方式以滑移为主,变形极限大大提高.  相似文献   

7.
TC4-DT钛合金的热变形行为研究及加工图   总被引:1,自引:0,他引:1  
采用Gleeble-1500D热模拟试验机进行热压缩实验,研究了TC4-DT钛合金在温度850~980℃、应变速率为0.001~10 s-1、变形量为50%条件下的热变形行为。根据应力–应变曲线分析了该合金的流变应力变化特点,建立了该合金的Arrhenius型本构方程及加工图。结果表明:流变应力随变形温度降低及应变速率增大而升高;变形温度与应变速率对TC4-DT合金应力影响显著;本实验测得的平均激活能为587.2 kJ/mol;该合金合适的加工条件为<0.6 s-1,温度大于850℃。  相似文献   

8.
利用热压缩法研究了TC18合金的热变形行为,并利用TEM和EBSD研究了热压缩过程的显微组织演化。结果表明,TC18合金650℃流变曲线呈现单一峰值的动态再结晶特征,变形温度的提高使单一峰值的特征逐渐减弱直至消失。650℃,0.001 s-1时出现大量细小的再结晶晶粒,说明这时以再结晶为主;温度提高到810℃时,出现了规则的位错列和位错胞及介于位错胞之间的无位错区,说明这时出现回复和再结晶共存的现象。EBSD观察结果表明,在各个变形条件下β相亚结构比例都要高于α相,说明β相比α相更易发生回复现象;随变形温度提高和变形速率降低,β相发生回复的体积分数增加。  相似文献   

9.
采用Gleeble-3800热模拟压缩试验机研究了高氧TC4钛合金在温度为990~1 030 ℃、应变速率为0.01~1.0 s-1、变形量为60%时的变形行为及微观组织特征,并构建了该合金的本构方程。结果表明,高氧TC4钛合金在β单相区变形时随着应变速率的增加和变形温度的降低,其流动应力显著增加,该合金在β相区的变形激活能为141 kJ/mol。在990~1 030 ℃加热温度下,原始β晶粒尺寸在250~255 μm范围内,晶粒尺寸对温度不敏感。随着应变速率的增大,原始β晶粒沿着垂直于压缩轴方向被拉长,在被拉长的原始β晶界上可观察到β再结晶晶粒。  相似文献   

10.
《塑性工程学报》2016,(2):120-125
利用Gleeble-3800热模拟试验机进行热压缩实验,研究了TC4-DT钛合金在温度1163K~1293K、应变速率为0.005s~(-1)~0.5s~(-1)、变形量为60%条件下的热变形行为。根据应力-应变曲线分析该合金的流变应力变化特点,建立该合金的Arrhenius双曲正弦型本构方程。结果表明,所建立的本构方程与实验值吻合程度较高,为制定TC4-DT钛合金热加工工艺规范提供理论依据。  相似文献   

11.
在Thermecmastor-Z试验机上进行热压缩实验,在应变速率0.01~10 s~(-1)、变形温度900~1150℃条件下对TC27钛合金的变形行为进行研究并建立其本构方程。结果表明,该材料为温度和应变速率敏感材料。在变形初始阶段,流变应力随真应变的增加迅速增大,达到应力峰值后随真应变的增加缓慢降低,最后趋于相对稳定的状态。流变应力随温度的升高而降低,随应变速率的增加而增加。热压缩实验过程流变应力随应变速率和变形温度的变化规律可以用材料的本构方程来表征,变形激活能为Q=300 k J/mol。  相似文献   

12.
Hot compression tests on samples of the TC11 (Ti–6.5Al–3.5Mo–1.5Zr–0.3Si) titanium alloy have been done within the temperatures of 750–950 °C and strain rate ranges of 0.1–10 s?1 to 40–60% height reduction. The experimental results show that the flow stress behavior can be described by an exponential law for the deformation conditions. The hot deformation activation energy (Q) derived from the experimental data is 538 kJ mol?1 with a strain rate sensitivity exponent (m) of 0.107. Optical microstructure evidence shows that dynamic recrystallization (DRX) takes place during the deformation process. Moreover, only α DRX grains are founded in the titanium alloys. The influences of hot working parameters on the flow stress behavior and microstructural features of TC11 alloy, especially on the type of phase present, the morphologies of the α phase, grain size and DRX are analyzed. The optimum parameters for hot working of TC11 alloy are developed.  相似文献   

13.
针对TC4钛合金超塑成形过程中的流变行为、表征及其应用进行了研究。首先,通过恒应变率高温拉伸试验获得TC4钛合金在高温下的流变行为,发现动态回复主要作用于低应变率的变形,动态再结晶主要作用于高应变率下的应力软化机制。此外,建立一套修正的本构模型用以表征材料的高温流变行为,预测值与试验值之间的平均相对误差为13.09%,证实该本构模型适应于表征钛合金超塑成形的应力-应变关系。最后,基于本构模型,结合ABAQUS有限元软件的CREEP蠕变子程序,考虑应变补偿的影响,开发了一种针对TC4钛合金高温超塑行为数值模拟的方法。以高温拉伸试验为研究对象,分别针对数值模拟应变率、应力和应变结果进行分析,验证了该方法的有效性。  相似文献   

14.
在Gleeble-1500D热模拟机上对等离子烧结态TC4钛合金开展单向热压缩实验,研究该合金在应变速率为10-3~5 s~(-1)、变形温度为850~1050℃条件下的热变形行为。根据Arrheniu方程构建符合等离子烧结态TC4钛合金高温塑性变形的本构方程。结果表明:在初始变形阶段,由于加工硬化的作用,等离子烧结态TC4钛合金流变应力值随应变的增加迅速达到峰值应力,而后应力值开始减小并趋于稳定,表明该合金变形行为符合稳态流变特征;采用所建立的等离子烧结态TC4钛合金的Arrhenius双曲正弦本构方程能够较好地预测TC4钛合金的峰值应力,且预测值与实测值之间的平均相对误差为6. 73%。在950℃和0. 1 s~(-1)以及1050℃和5 s~(-1)条件下,模型平均相对误差绝对值分别为2. 03%和4. 67%。等离子烧结态TC4钛合金的平均变形激活能为411 k J·mol~(-1),平均应变速率敏感指数为0. 21。  相似文献   

15.
16.
The samples of TAI 5 titanium alloy were hot compressed in the temperature range of 550-1 000 β at constant strain rate from 0.01 s^-1 to 1.0 s^-1. The flow behavior and microstructural evolution during hot deformation of TA 15 alloy were investigated, based on which the hot working parameters of TA15 alloy were selected. The results show that with the increase of deformation temperature and decrease of stain rate, the flow stress decreases gradually, but the magnitude of stress drop varies with the increase of temperature in different temperature intervals. According to the flow stress and deformation microstructure, the deformation behavior can be classified into three types as working hardening(550-600 β, α+β phase), dynamic recrystallization (650-900 ℃, α+β phase) and dynamic recovery(950-1 000 ℃, β phase). The main softening mechanism is dynamic recrystallization(DRX) of a phase in α+β phase zone and dynamic recovery(DRV) of β phase in β phase zone. As the stain rate decreases dynamic recrystallization of a phase proceeds more adequately in α+β zone and the β subgrains of dynamic recovery have the tendency to grow infl zone. The reasonable temperature for warm forming of TA15 alloy is in the range of 600-700 , which has been verified by warm spinning experiment of tube workpieces.:  相似文献   

17.
采用实验和有限元模拟相结合的方法,研究了经连续变断面循环挤压制备的细晶TC4钛合金热加工过程中的动态再结晶(DRX)行为。通过实验得到的真应力-应变曲线,建立了细晶TC4钛合金的临界应变模型和DRX动力学模型,并基于所建立的DRX模型,采用DEFORM-3D软件对其热压缩过程进行了模拟。结果表明:热压缩工艺参数对细晶TC4合金的DRX行为有显著影响;随着变形温度的升高和应变速率的降低,动态再结晶的体积分数(XDRX)及其晶粒尺寸均增大;随着应变的增大,变形区的等效应变和区域范围均增大;合金变形时,XDRX的实验值与其模拟值的相关性为0.9762,表明所建立的模型具有较高的精度。  相似文献   

18.
以采用放电等离子烧结技术制备的Φ8 mm×12 mm TC4钛合金粉末预锻体为研究对象,采用Gleeble-1500D热模拟试验机在850~1050℃、0. 001~5 s~(-1)条件下进行热塑性变形行为研究。结果表明,相较于温度的变化,应变速率改变对TC4钛合金的热变形产生较大影响。在高温条件下(T> 1000℃),放电等离子烧结后的TC4钛合金粉末对应变速率的变化更为敏感;在加工过程中应避免高应变速率(■≥0. 22 s~(-1))下的变形。在高温条件下(T> 970℃),应变速率应低于0. 007 s~(-1),以避免流动不稳定的发生。放电等离子烧结TC4钛合金粉末热加工的最佳参数范围为930~1020℃、■<0. 007 s~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号