首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cost of hydrogen in early fuel cell electric vehicle (FCEV) markets is dominated by the cost of refueling stations, mainly due to the high cost of refueling equipment, small station capacities, lack of economies of scale, and low utilization of the installed refueling capacity. Using the hydrogen delivery scenario analysis model (HDSAM), this study estimates the impacts of these factors on the refueling cost for different refueling technologies and configurations, and quantifies the potential reduction in future hydrogen refueling cost compared to today's cost in the United States. The current hydrogen refueling station levelized cost, for a 200 kg/day dispensing capacity, is in the range of $6–$8/kg H2 when supplied with gaseous hydrogen, and $8–$9/kg H2 for stations supplied with liquid hydrogen. After adding the cost of hydrogen production, packaging, and transportation to the station's levelized cost, the current cost of hydrogen at dispensers for FCEVs in California is in the range of $13–$15/kg H2. The refueling station capacity utilization strongly influences the hydrogen refueling cost. The underutilization of station capacity in early FCEV markets, such as in California, results in a levelized station cost that is approximately 40% higher than it would be in a scenario where the station had been fully utilized since it began operating. In future mature hydrogen FCEV markets, with a large demand for hydrogen, the refueling station's levelized cost can be reduced to $2/kg H2 as a result of improved capacity utilization and reduced equipment cost via learning and economies of scale.  相似文献   

2.
In Norway, where nearly 100% of the power is hydroelectric, it is natural to consider water electrolysis as the main production method of hydrogen for zero-emission transport. In a startup market with low demand for hydrogen, one may find that small-scale WE-based hydrogen production is more cost-efficient than large-scale production because of the potential to reach a high number of operating hours at rated capacity and high overall system utilization rate. Two case studies addressing the levelized costs of hydrogen in local supply systems have been evaluated in the present work: (1) Hydrogen production at a small-scale hydroelectric power plant (with and without on-site refueling) and (2) Small hydrogen refueling station for trucks (with and without on-site hydrogen production). The techno-economic calculations of the two case studies show that the levelized hydrogen refueling cost at the small-scale hydroelectric power plant (with a local station) will be 141 NOK/kg, while a fleet of 5 fuel cell trucks will be able to refuel hydrogen at a cost of 58 NOK/kg at a station with on-site production or 71 NOK/kg at a station based on delivered hydrogen. The study shows that there is a relatively good business case for local water electrolysis and supply of hydrogen to captive fleets of trucks in Norway, particularly if the size of the fleet is sufficiently large to justify the installation of a relatively large water electrolyzer system (economies of scale). The ideal concept would be a large fleet of heavy-duty vehicles (with a high total hydrogen demand) and a refueling station with nearly 100% utilization of the installed hydrogen production capacity.  相似文献   

3.
An integrated energy system coupled with wind turbines and an on-site hydrogen refueling station is proposed to simulate the future scenario, which can meet the demands of cooling, heating, power and hydrogen. The system was modeled to calculate the capacity and annual operation of each equipment with the total annual cost as the optimization objective. This study evaluates the performance of the system based on the results. When the system is configured with 0–10 wind turbines, the economics, energy consumption and carbon emissions improve as the scale of wind turbines increases. Energy utilization and wind power utilization are above 66.79% and 99.73%, respectively. The on-off coefficient of the power generation unit can affect energy efficiency. When the system contains 5 turbines, 91% of the hydrogen can be self-produced with the minimum amount of energy redundancy.  相似文献   

4.
In recent decades, the consequences of climate changes due to greenhouse gas (GHG) emissions have become ever more impactful, forcing international authorities to find green solutions for sustainable economic development. In this regard, one of the global targets is the reduction of fossil fuels utilization in the transport sector to encourage the diffusion of more environmentally friendly alternatives. Among them, hydrogen is emerging as a viable candidate since it is a potentially emission-free fuel when produced by exploiting renewable energy sources (RES). Nevertheless, to allow widespread use of this gas in the transport sector, several technoeconomic barriers, including production cost, and lack of distribution and storage infrastructure, have to be overcome. Distributed hydrogen production via renewable energy-powered electrolysis could be an effective solution to reduce cost and lead to economies of scale. In this study a multi-hub configuration with on-site production from PV-powered electrolysis and centralized production from steam methane reforming (SMR) is proposed. In particular, an infrastructure network for a bus refueling station located in Lazio is considered as a case study. First, each hub, composed of PV panels, an electrolyzer, a compression system, high-pressure and low-pressure storages, and hydrogen dispensers with chiller, is modeled in a Matlab/Simulink environment. Then, a design perturbation analysis is carried out to determine the impact of the configuration on the refueling station performance in terms of carbon emissions levels and the Levelized Cost of hydrogen (LCOH). The results show a significant influence of the station size on the economic performance highlighting significant benefits (reduction up to 40% in the LCOH) for a 80 bus HUB with a saturating trend towards larger sizes. CO2 emissions per unit mass of hydrogen are kept limited for all the stations thanks to the synergistic effects of SMR and Electrolyzer. Interconnecting more than one station each other further benefits can be achieved from the environmental perspective (savings up to 5 tons of CO2 are demonstrated for a typical summer case study).  相似文献   

5.
Long-distance road-freight transport emits a large share of Germany's greenhouse gas (GHG) emissions. A potential solution for reducing GHG emissions in this sector is to use green hydrogen in fuel cell electric vehicles (FC-HDV) and establish an accompanying hydrogen refueling station (HRS) network. In this paper, we apply an existing refueling network design model to a HDV-HRS network for Germany until 2050 based on German traffic data for heavy-duty trucks and estimate its costs. Comparing different fuel supply scenarios (pipeline vs. on-site), The on-site scenario results show a network consisting of 137 stations at a cost of 8.38 billion € per year in 2050 (0.40 € per vehicle km), while the centralized scenario with the same amount of stations shows a cheaper cost with 7.25 billion euros per year (0.35 € per vehicle km). The hydrogen cost (LCOH) varies from 5.59 €/kg (pipeline) to 6.47 €/kg (on-site) in 2050.  相似文献   

6.
Refueling costs account for much of the fuel cost for light-duty hydrogen fuel-cell electric vehicles. We estimate cost savings for hydrogen dispensing if metal hydride (MH) storage tanks are used on board instead of 700-bar tanks. We consider a low-temperature, low-enthalpy scenario and a high-temperature, high-enthalpy scenario to bracket the design space. The refueling costs are insensitive to most uncertainties. Uncertainties associated with the cooling duty, coolant pump pressure, heat exchanger (HX) fan, and HX operating time have little effect on cost. The largest sensitivities are to tank pressure and station labor. The cost of a full-service attendant, if the refueling interconnect were to prevent self-service, is the single largest cost uncertainty. MH scenarios achieve $0.71–$0.75/kg-H2 savings by reducing compressor costs without incurring the cryogenics costs associated with cold-storage alternatives. Practical refueling station considerations are likely to affect the choice of the MH and tank design.  相似文献   

7.
Interest in hydrogen as a transportation fuel is growing in Shanghai. Shell Hydrogen, Tongji University, and the City of Shanghai plan to construct a network of refueling stations throughout the city to stimulate fuel cell vehicle and bus deployment. The purpose of this paper is to (1) examine the near-term costs of building hydrogen stations of various types and sizes in Shanghai and (2) present a flexible cost analysis methodology that can be applied to other metropolitan regions.The costs for four different station types are analyzed with respect to size and hydrogen production method. These costs are compared with cost estimates of similar stations built in California. Based on the hydrogen station cost analysis conducted here, we have found that hydrogen costs ($/kg) vary considerably based on station type and size. On-site hydrogen production from methane or methanol results in the lowest cost per kg. The higher cost of truck-delivered hydrogen from industrial sites in Shanghai vs. California is mainly due to feedstock costs differences. Electrolyzer stations yield the highest hydrogen cost.  相似文献   

8.
Hydrogen fuel cell vehicles are currently facing two difficulties in achieving their general use: the lack of hydrogen refueling stations and high hydrogen prices. Hydrogen refueling stations are the middle stage for delivering hydrogen from its sources to consumers, and their location could be affected by the distributed locations of hydrogen sources and consumers. The reasonable siting and sizing of hydrogen refueling stations could both improve the hydrogen infrastructure and reduce regional consumers' cost of using hydrogen. By considering the hydrogen life cycle cost and using a commercial volume forecasting model, this paper creates a relatively thorough and comprehensive model for hydrogen station siting and sizing with the objective of achieving the optimal costs for consumers using hydrogen. The cost‐based model includes the selection of the hydrogen sources, transportation methods, and storage methods, and thus, the hydrogen supply chain can also be optimized. A numerical example is established in Section 4 with the solution algorithm and results.  相似文献   

9.
On-board and off-board performance and cost of cryo-compressed hydrogen storage are assessed and compared to the targets for automotive applications. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers liquid H2 to the insulated cryogenic tank capable of being pressurized to 272 atm. The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) or by central electrolysis. The main conclusions are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity, mid-term target for system volumetric capacity, and the target for hydrogen loss during dormancy under certain conditions of minimum daily driving. However, the high-volume manufacturing cost and the fuel cost for the SMR hydrogen production scenario are, respectively, 2–4 and 1.6–2.4 times the current targets, and the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.  相似文献   

10.
In order to make full use of renewable energy and improve the utilization of wind power, a new joint optimization scheme of the wind-hydrogen system coupled with transmission project is proposed in this paper, in which wind power is reasonably allocated for grid integration and for hydrogen production. Aiming at maximize the annul wind-hydrogen system benefit, the optimal sizes of wind power transmission project and hydrogen system are obtained under different hydrogen production modes, hydrogen trading modes and hydrogen demand levels. In addition, the penalty cost of wind curtailment and hydrogen supply shortage and the system environmental benefits are taken into account. Results show: during the long-term of insufficient of wind power, it is better to produce hydrogen using wind power and grid-assisted power to avoid hydrogen supply shortage; considering the future increase of hydrogen demand, the optimal supply number of hydrogen refueling stations in the wind-hydrogen system is two. Also, the low utilization of fuel cells means that the benefit from regeneration cannot offset the high cost, which leads to the abnegation of fuel cells in the wind-hydrogen system.  相似文献   

11.
The potential benefits of hydrogen as a transportation fuel will not be achieved until hydrogen vehicles capture a substantial market share. However, although hydrogen fuel cell vehicle (FCV) technology has been making rapid progress, the lack of a hydrogen infrastructure remains a major barrier for FCV adoption and commercialization. The high cost of building an extensive hydrogen station network and the foreseeable low utilization in the near term discourages private investment. Based on the past experience of fuel infrastructure development for motor vehicles, innovative, distributed, small-volume hydrogen refueling methods may be required to refuel FCVs in the near term. Among small-volume refueling methods, home and neighborhood tri-generation systems (systems that produce electricity and heat for buildings, as well as hydrogen for vehicles) stand out because the technology is available and has potential to alleviate consumer's fuel availability concerns. In addition, it has features attractive to consumers such as convenience and security to refuel at home or in their neighborhood.The objective of this paper is to provide analytical tools for various stakeholders such as policy makers, manufacturers and consumers, to evaluate the design and the technical, economic, and environmental performances of tri-generation systems for home and neighborhood refueling. An interdisciplinary framework and an engineering/economic model is developed and applied to assess home tri-generation systems for single family residences (case studies on neighborhood systems will be provided in a later paper). Major tasks include modeling yearly system operation, exploring the optimal size of a system, estimating the cost of electricity, heat and hydrogen, and system CO2 emissions, and comparing the results to alternatives. Sensitivity analysis is conducted, and the potential impacts of uncertainties in energy prices, capital cost reduction (or increase), government incentives and environmental cost are evaluated. Policy implications of the modeling results are also explored.  相似文献   

12.
We have examined the technical feasibility and economics of developing a hydrogen vehicle refueling infrastructure for a specific area where zero emission vehicles are being considered, Southern California. Potential hydrogen demands for zero emission vehicles are estimated. We then assess in detail several near term possibilities for producing and delivering gaseous hydrogen transportation fuel including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and truck delivered as a liquid to refueling stations; (2) hydrogen produced in a large, centralized steam reforming plant, and delivered via small scale hydrogen gas pipeline to refueling stations; (3) by-product hydrogen from chemical industry sources; (4) hydrogen produced at the refueling station via small scale steam reforming of natural gas; and (5) hydrogen produced via small scale electrolysis at the refueling station. The capital cost of infrastructure and the delivered cost of hydrogen are estimated for each hydrogen supply option. Hydrogen is compared to other fuels for fuel cell vehicles (methanol, gasoline) in terms of vehicle cost, infrastructure cost and lifecycle cost of transportation. Finally, we discuss possible scenarios for introducing hydrogen as a fuel for fuel cell vehicles.  相似文献   

13.
In this study, different hydrogen refueling station (HRS) architectures are analyzed energetically as well as economically for 2015 and 2050. For the energetic evaluation, the model published in Bauer et al. [1] is used and norm-fitting fuelings according to SAE J2601 [2] are applied. This model is extended to include an economic evaluation. The compressor (gaseous hydrogen) resp. pump (liquid hydrogen) throughput and maximum pressures and volumes of the cascaded high-pressure storage system vessels are dimensioned in a way to minimize lifecycle costs, including depreciation, capital commitment and electricity costs. Various station capacity sizes are derived and energy consumption is calculated for different ambient temperatures and different station utilizations. Investment costs and costs per fueling mass are calculated based on different station utilizations and an ambient temperature of +12 °C. In case of gaseous trucked-in hydrogen, a comparison between 5 MPa and 20 MPa low-pressure storage is conducted. For all station configurations and sizes, a medium-voltage grid connection is applied if the power load exceeds a certain limit. For stations with on-site production, the electric power load of the hydrogen production device (electrolyzer or gas reformer) is taken into account in terms of power load. Costs and energy consumption attributed to the production device are not considered in this study due to comparability to other station concepts. Therefore, grid connection costs are allocated to the fueling station part excluding the production device. The operational strategy of the production device is also considered as energy consumption of the subsequent compressor or pump and the required low-pressure storage are affected by it. All station concepts, liquid truck-supplied hydrogen as well as stations with gaseous truck-supplied or on-site produced hydrogen show a considerable cost reduction potential. Long-term specific hydrogen costs of large stations (6 dispensers) are 0.63 €/kg – 0.76 €/kg (dependent on configuration) for stations with gaseous stored hydrogen and 0.18 €/kg for stations with liquid stored hydrogen. The study focuses only on the refueling station and does not allow a statement about the overall cost-effectiveness of different pathways.  相似文献   

14.
The construction of hydrogenation infrastructure is important to promote the large-scale development of hydrogen energy industry. The technical performance of hydrogen refueling station (HRS) largely determines the refueling efficiency and cost of hydrogen fuel cell vehicles. This paper systematically lists the hydrogen refueling process and the key equipment applicable in the HRS. It comprehensively reviews the key equipment configuration from the hydrogen supply, compression, storage and refueling of the HRS. On the basis of the parameter selection and quantity configuration method, the process optimization technology related to the equipment utilization efficiency and construction cost was quantitatively evaluated. Besides, the existing problems and prospects are put forward, which lays the foundation for further research on the technical economy of HRSs.  相似文献   

15.
The future success of fuel cell electric vehicles requires a corresponding infrastructure. In this study, two different refueling station concepts for fuel cell passenger cars with 70 MPa technology were evaluated energetically. In the first option, the input of the refueling station is gaseous hydrogen which is compressed to final pressure, remaining in gaseous state. In the second option, the input is liquid hydrogen which is cryo-compressed directly from the liquid phase to the target pressure. In the first case, the target temperature of −33 °C to −40 °C [1] is achieved by cooling down. In the second option, gaseous deep-cold hydrogen coming from the pump is heated up to target temperature. A dynamic simulation model considering real gas behavior to evaluate both types of fueling stations from an energetic perspective was created. The dynamic model allows the simulation of boil-off losses (liquid stations) and standby energy losses caused by the precooling system (gaseous station) dependent on fueling profiles. The functionality of the model was demonstrated with a sequence of three refueling processes within a short time period (high station utilization). The liquid station consumed 0.37 kWh/kg compared to 2.43 kWh/kg of the gaseous station. Rough estimations indicated that the energy consumption of the entire pathway is higher for liquid hydrogen. The analysis showed the high influence of the high-pressure storage system design on the energy consumption of the station. For future research work the refueling station model can be applied to analyze the energy consumption dependent on factors like utilization, component sizing and ambient temperature.  相似文献   

16.
This paper investigates the performance of a hydrogen refueling system that consists of a polymer electrolyte membrane electrolyzer integrated with photovoltaic arrays, and an electrochemical compressor to increase the hydrogen pressure. The energetic and exergetic performance of the hydrogen refueling station is analyzed at different working conditions. The exergy cost of hydrogen production is studied in three different case scenarios; that consist of i) off-grid station with the photovoltaic system and a battery bank to supply the required electric power, ii) on-grid station but the required power is supplied by the electric grid only when solar energy is not available and iii) on-grid station without energy storage. The efficiency of the station significantly increases when the electric grid empowers the system. The maximum energy and exergy efficiencies of the photovoltaic system at solar irradiation of 850 W m-2 are 13.57% and 14.51%, respectively. The exergy cost of hydrogen production in the on-grid station with energy storage is almost 30% higher than the off-grid station. Moreover, the exergy cost of hydrogen in the on-grid station without energy storage is almost 4 times higher than the off-grid station and the energy and exergy efficiencies are considerably higher.  相似文献   

17.
Creating a distribution network and establishing refueling stations arises as an important problem in order to meet the refueling needs of hydrogen fuel cell vehicles. In this study, a multi-objective and multi-period hydrogen refueling station location problem that can take into account long-term planning decisions is proposed. Firstly, single objective mathematical models are proposed for the problem by addressing the cost, risk and population convergence objectives. Afterwards, a goal programming model is proposed and the results that will arise when three objectives are taken into consideration at the same time are examined. A risk analysis approach applied for each location alternative is considered in order to handle risk concerns about the hydrogen refueling station settlement. A case study is conducted in Adana, one of the crowded cities in Turkey, to determine the long-term location network plan. Covered population, operational risk and earthquake risks are used as input of the risk analysis method. The case study results show that the goal programming model covers the area with 77 hydrogen refueling stations by different types and capacities during the years from 2020 to 2030. In addition, a computational study is carried out with different alternative scenarios (different number of consumption nodes and all parameters in the model). The computational study results show that the highest deviations from the optimal solution on the model are observed in the distances between consumption nodes and targeted service area parameters which affect about 50% of absolute deviations on average. According to results, the proposed approach selects the station location suitable for the expected changes over the years.  相似文献   

18.
The comparative techno-economic analysis and quantitative risk analysis (QRA) of the hydrogen delivery infrastructure covering the national hydrogen demands are presented to obtain a comprehensive understanding of the infrastructure of commercial hydrogen delivery. The cost calculation model, which was based on the hydrogen delivery scenario analysis model (HDSAM), was employed to estimate the costs of hydrogen fuel delivery in Seoul, Korea, whose area is small enough to not require intermediate delivery stations. The QRA methodology was modified to be suitable for the comparative analysis of the whole hydrogen infrastructure. The capacities of a hydrogen refueling station and the hydrogen market penetration were employed as the main variables and the two scenarios, viz. the gaseous and liquid hydrogen delivery options, were considered. The analysis results indicate that the delivery system of gaseous hydrogen was superior in terms of cost and that of liquid hydrogen was superior in terms of safety. Both delivery options were affected by the capacity of the station and the market penetration, and the cost and risk drastically changed, especially when the two variables were small. Thus, according to the results, the economic and safety issues of the hydrogen delivery infrastructure are critical to achieving a hydrogen energy society.  相似文献   

19.
Fuel cell electric vehicles (FCEVs) have now entered the market as zero-emission vehicles. Original equipment manufacturers such as Toyota, Honda, and Hyundai have released commercial cars in parallel with efforts focusing on the development of hydrogen refueling infrastructure to support new FCEV fleets. Persistent challenges for FCEVs include high initial vehicle cost and the availability of hydrogen stations to support FCEV fleets. This study sheds light on the factors that drive manufacturing competitiveness of the principal systems in hydrogen refueling stations, including compressors, storage tanks, precoolers, and dispensers. To explore major cost drivers and investigate possible cost reduction areas, bottom-up manufacturing cost models were developed for these systems. Results from these manufacturing cost models show there is substantial room for cost reductions through economies of scale, as fixed costs can be spread over more units. Results also show that purchasing larger quantities of commodity and purchased parts can drive significant cost reductions. Intuitively, these cost reductions will be reflected in lower hydrogen fuel prices. A simple cost analysis shows there is some room for cost reduction in the manufacturing cost of the hydrogen refueling station systems, which could reach 35% or more when achieving production rates of more than 100 units per year. We estimated the potential cost reduction in hydrogen compression, storage and dispensing as a result of capital cost reduction to reach 5% or more when hydrogen refueling station systems are produced at scale.  相似文献   

20.
The objective of this study to develop and undertake a comprehensive CFD analysis of an effective state-of-the-art 250 kg/day hydrogen generation unit for an on-site hydrogen refueling station (HRS), an essential part of the infrastructure required for fuel cell vehicles and various aspects of hydrogen mobility. This design consists of twelve reforming tubes and one newly designed metal fiber burner to ensure superior emission standards and performance. Experimental and computational modeling steps are conducted to investigate the effects of various operating conditions, the excess air ratio (EAR) at the burner, the gas hourly space velocity (GHSV), the process gas inlet temperature, and the operating pressure on the hydrogen production rate and thermal efficiency. The results indicate that the performance of the steam methane reforming reactor increased significantly by improving the combustion characteristics and preventing local peak temperatures along the reforming tube. It is shown that EAR should be chosen appropriately to maximize the hydrogen production rate and lifetime operation of the reformer tube. It is found that high inlet process gas temperatures and low operating pressure are beneficial, but these parameters have to be chosen carefully to ensure proper efficiency. Also, a high GHSV shortens the residence time and provides unfavorable heat transfer in the bed, leading to decreased conversion efficiency. Thus, a moderate GHSV should be used. It is shown that heat transfer is an essential factor for obtaining increased hydrogen production. This study addresses the pressing need for the HRS to adopt such a compact system, whose processes can ensure greater hydrogen production rates as well as better durability, reliability, and convenience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号