首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of efficient hydrogen refueling station (HRS) is highly desirable to reduce the hydrogen cost and hence the life cycle expense of fuel cell vehicles (FCVs), which is hindering the large scale application of hydrogen mobility. In this work, we demonstrate the optimization of gaseous HRS process and control method to perform fast and efficient refueling, with reduced energy consumption and increased daily fueling capacity. The HRS was modeled with thermodynamics using a numerical integration method and the accuracy for hydrogen refueling simulation was confirmed by experimental data, showing only 2 °C of temperature rise deviation. The refueling protocols for heavy duty FCVs were first optimized, demonstrating an average fueling rate of 2 kg/min and pre-cooling demand of less than 7 kW for 35 MPa type III tanks. Fast refueling of type IV tanks results in more significant temperature rise, and the required pre-cooling temperature is lowered by 20 K to achieve comparable fueling rate. The station process was also optimized to improve the daily fueling capacity. It is revealed that the hydrogen storage amount is cost-effective to be 25–30% that of the nominal daily refueling capacity, to enhance the refueling performance at peak time and minimize the start and stop cycles of compressor. A novel control method for cascade replenishment was developed by switching among the three banks in the order of decreased pressure, and results show that the daily refueling capacity of HRS is increased by 5%. Therefore, the refueling and station process optimization is effective to promote the efficiency of gaseous HRS.  相似文献   

2.
Dispenser allocation to hydrogen refueling stations aims at minimizing the number of dispensers while ensuring satisfactory performance of vehicle queues during the peak hour of a peak day. A queuing model is developed in this study to evaluate the queuing performance at such stations by incorporating the statistical and thermodynamic characteristics of refueling. An optimization framework is proposed to determine the minimal number of dispensers required to meet the upper limits imposed on two important performance measures: mean waiting time and mean queue length. Reasonable upper limits are provided for 70 MPa stations according to the effects of dispenser allocation and station capacity on queuing performance. Server (dispenser nozzle) utilization under the optimal dispenser allocation generally increases with an increase in station size and tends to exceed 50% for large stations. The proposed approach can offer significant performance improvements for small stations and considerable savings in the number of dispensers for large ones.  相似文献   

3.
Clean energy resources will be used more for sustainability improvement and durable development. Efficient technologies of energy production, storage, and usage results in reduction of gas emissions and improvement of the world economy. Despite 30% of electricity being produced from wind energy, the connection of wind farms to medium and large-scale grid power systems is still leading to instability and intermittency problems. Therefore, the conversion of electrical energy generated from wind parks into green hydrogen consists of an exciting solution for advancing the development of green hydrogen production, and the clean transportation sector. This paper presents a techno-economic optimization of hydrogen production for refueling fuel cell vehicles, using wind energy resources. The paper analyses three configurations, standalone Wind-Park Hydrogen Refueling Station (WP-HRS) with backup batteries, WP-HRS with backup fuel cells, and grid-connected WP-HRS. The analysis of different configurations is based on the wind potential at the site, costs of different equipment, and hydrogen load. Therefore, the study aims to find the optimized capacity of wind turbines, electrolyzers, power converters, and storage tanks. The optimization results show that the WP-HRS connected to the grid has the lowest Present Worth Cost (PWC) of 6,500,000 €. Moreover, the Levelized Hydrogen Cost (LHC) of this solution was found to be 6.24 €/kg. This renewable energy system produces 80,000 kg of green hydrogen yearly.  相似文献   

4.
The objective of this study to develop and undertake a comprehensive CFD analysis of an effective state-of-the-art 250 kg/day hydrogen generation unit for an on-site hydrogen refueling station (HRS), an essential part of the infrastructure required for fuel cell vehicles and various aspects of hydrogen mobility. This design consists of twelve reforming tubes and one newly designed metal fiber burner to ensure superior emission standards and performance. Experimental and computational modeling steps are conducted to investigate the effects of various operating conditions, the excess air ratio (EAR) at the burner, the gas hourly space velocity (GHSV), the process gas inlet temperature, and the operating pressure on the hydrogen production rate and thermal efficiency. The results indicate that the performance of the steam methane reforming reactor increased significantly by improving the combustion characteristics and preventing local peak temperatures along the reforming tube. It is shown that EAR should be chosen appropriately to maximize the hydrogen production rate and lifetime operation of the reformer tube. It is found that high inlet process gas temperatures and low operating pressure are beneficial, but these parameters have to be chosen carefully to ensure proper efficiency. Also, a high GHSV shortens the residence time and provides unfavorable heat transfer in the bed, leading to decreased conversion efficiency. Thus, a moderate GHSV should be used. It is shown that heat transfer is an essential factor for obtaining increased hydrogen production. This study addresses the pressing need for the HRS to adopt such a compact system, whose processes can ensure greater hydrogen production rates as well as better durability, reliability, and convenience.  相似文献   

5.
The rollout of hydrogen fuel cell electric vehicles (FCEVs) requires the initial deployment of an adequate network of hydrogen refueling stations (HRSs). Such deployment has proven to be challenging because of the high initial capital investment, the risk associated with such an investment, and the underutilization of HRSs in early FCEV markets. Because the compression system at an HRS represents about half of the station's initial capital cost, novel concepts that would reduce the cost of compression are needed. Argonne National Laboratory with support from the U.S. Department of Energy's (DOE) Fuel Cell Technologies Office (FCTO) has evaluated the potential for delivering hydrogen in high-pressure tube-trailers as a way of reducing HRS compression and capital costs. This paper describes a consolidation strategy for a high-pressure (250-bar) tube-trailer capable of reducing the compression cost at an HRS by about 60% and the station's initial capital investment by about 40%. The consolidation of tube-trailers at pressures higher than 250 bar (e.g., 500 bar) can offer even greater HRS cost-reduction benefits. For a typical hourly fueling-demand profile and for a given compression capacity, consolidating hydrogen within the pressure vessels of a tube-trailer can triple the station's capacity for fueling FCEVs. The high-pressure tube-trailer consolidation concept could play a major role in enabling the early, widespread deployment of HRSs because it lowers the required HRS capital investment and distributes the investment risk among the market segments of hydrogen production, delivery, and refueling.  相似文献   

6.
Hydrogen used in proton exchange membrane-based fuel cell applications is subject to very high quality requirements. While the influences of contaminations in hydrogen on long-term stability have been intensively studied, the purity of hydrogen for mobile applications provided at hydrogen refueling stations (HRS) is rarely analyzed. Hence, in this study, we present sampling of hydrogen at HRS with a specially designed mobile tank for up to 70 MPa. These samples are precisely analyzed with a sophisticated ion molecule reaction mass spectrometer (IMR-MS), able to determine concentrations of contaminants down to the ppb-level. Sampling and analysis of hydrogen at an HRS supplied by electrolysis revealed a high purity, but likewise considerable contaminations above the threshold of the international standard ISO 14687:2019. In this study, a state-of-the-art analysis coupled with a developed methodology for fuel cell electric vehicle-independent sampling of hydrogen with a mobile tank system is demonstrated and applied for comprehensive studies of hydrogen purity.  相似文献   

7.
Hydrogen-energy expressway system planning involves load prediction, hydrogen source planning and hydrogen station planning. Exemplary construction of a run-for-profit hydrogen-energy expressway must attach importance to comprehensive evaluation of the effect of investment. The paper analyzes current situation of hydrogen-energy expressway construction, points out that adequate consideration should be given in all aspects of hydrogen energy's life cycle cost, such as hydrogen production, transport, storage, usage, CO2 disposal, carbon tax, hydrogen station's annual construction investment and annual operating expenses. The paper suggests that hydrogen made from discarded electricity of clean energies and hydrogen produced as byproduct during chemical plant production should be utilized to reduce production cost. On the basis of hydrogen energy's life cycle cost analysis, the paper creates a hydrogen station siting optimization model, with the constraints of hydrogen station's supply radius, hydrogen source's productivity and geographic information factor, so as to increase the applicability and level of hydrogen-energy expressway planning effectively.  相似文献   

8.
For optimizing locations of hydrogen refueling stations, two popular approaches represent fuel demands as either nodes or paths, which imply different refueling behavior and definitions of convenience. This paper compares path-based vs. node-based models from the perspective of minimizing total additional travel time and feasibly covering all demands with the same number of stations. For this comparison, two new station location models are introduced that extend the Flow Capturing Location Model (FCLM) and p-Median Problem (PMP) by consistently defining upper limits on vehicle driving range and maximum inconvenience on refueling trips. Results for an idealized metropolitan area and Orlando, Florida show that path-based refueling substantially reduces wasteful travel time for refueling and covers more demand feasibly and more equitably in most scenarios. Path-based models incorporate the fact that residents of a zone regularly interact with other zones; therefore, individual stations can cover flows originating both near and far from their locations. This study suggests that path-based approaches to planning hydrogen refueling infrastructure enable more people in more neighborhoods to refuel fuel-cell vehicles without wasting excessive time or running out of fuel.  相似文献   

9.
A low flow rate and short diaphragm life are the two disadvantages of diaphragm compressors when applied in hydrogen refueling stations. A new generatrix of the cavity profile of a diaphragm compressor was developed in this study to increase the cavity volume and decrease the diaphragm radial stress. A reduction in the diaphragm radial stress that resulted from the new design was validated by experiment and numerical simulation. The volumes of the cavities with different generatrices and the radial stress distribution of the diaphragm were investigated under various design conditions. The results indicated that the volume of the cavity with the new generatrix was approximately 10% larger than that with a traditional generatrix at the same allowable stress and cavity radius. At a similar cavity volume and radius, the radial stress values of the diaphragm in the cavity with the new generatrix were low. The decrease rate of the maximal radial stress of the diaphragm in the cavity with the new generatrix reached 13.8%. In the diaphragm centric region, where additional stress was induced by discharge holes, the maximal radial stress decrease rate reached 19.6%.  相似文献   

10.
The consequences of hydrogen leaks and explosions are predicted for the sake of the safety in hydrogen refueling stations. In this paper, the effect of wind speed on hydrogen leak and diffusion is analyzed in different regions of a hydrogen refueling station, and the influence of delayed ignition time on hydrogen explosion after an accidental hydrogen leak is further studied by numerical simulation. Results show that the effect of wind speed on the probability of hydrogen fires is distinctive in different regions of hydrogen refueling station. The size of combustible clouds in the trailer front region and the outer region increases in the low wind speed case, and the front of combustible clouds is formed in a spherical shape in the outer region, which can greatly increase the probability of hydrogen explosion. However, the high wind speed may cause an increase of the risk of accidents in the near ground region. Moreover, a non-linear correlation is shown between the rate of combustible cloud dissipation and wind speed after the hydrogen stops leaking. In addition, it is found that an increase in delayed ignition time may lead to an increase in explosion intensity, which is related with the larger high temperature area and stronger explosion overpressure. Two flame fronts and the reverse propagation of the explosion overpressure can be observed, when the delayed ignition time is larger.  相似文献   

11.
In recent decades, the consequences of climate changes due to greenhouse gas (GHG) emissions have become ever more impactful, forcing international authorities to find green solutions for sustainable economic development. In this regard, one of the global targets is the reduction of fossil fuels utilization in the transport sector to encourage the diffusion of more environmentally friendly alternatives. Among them, hydrogen is emerging as a viable candidate since it is a potentially emission-free fuel when produced by exploiting renewable energy sources (RES). Nevertheless, to allow widespread use of this gas in the transport sector, several technoeconomic barriers, including production cost, and lack of distribution and storage infrastructure, have to be overcome. Distributed hydrogen production via renewable energy-powered electrolysis could be an effective solution to reduce cost and lead to economies of scale. In this study a multi-hub configuration with on-site production from PV-powered electrolysis and centralized production from steam methane reforming (SMR) is proposed. In particular, an infrastructure network for a bus refueling station located in Lazio is considered as a case study. First, each hub, composed of PV panels, an electrolyzer, a compression system, high-pressure and low-pressure storages, and hydrogen dispensers with chiller, is modeled in a Matlab/Simulink environment. Then, a design perturbation analysis is carried out to determine the impact of the configuration on the refueling station performance in terms of carbon emissions levels and the Levelized Cost of hydrogen (LCOH). The results show a significant influence of the station size on the economic performance highlighting significant benefits (reduction up to 40% in the LCOH) for a 80 bus HUB with a saturating trend towards larger sizes. CO2 emissions per unit mass of hydrogen are kept limited for all the stations thanks to the synergistic effects of SMR and Electrolyzer. Interconnecting more than one station each other further benefits can be achieved from the environmental perspective (savings up to 5 tons of CO2 are demonstrated for a typical summer case study).  相似文献   

12.
Ambient condition, especially the wind condition, is an important factor to determine the behavior of hydrogen diffusion during hydrogen release. However, only few studies aim at the quantitative study of the hydrogen diffusion in a wind-exist condition. And very little researches aiming at the variable wind condition have been done. In this paper, the hydrogen diffusion in different wind condition which including the constant wind velocity and the variable wind velocity is investigated numerically. When considering the variable wind velocity, the UDF (user defined function) is compiled. Characteristics of the FGC (flammable gas cloud) and the HMF (hydrogen mass fraction) are analyzed in different wind condition and comparisons are made with the no-wind condition. Results indicate that the constant wind velocity and the variable wind velocity have totally different effect for the determination of hydrogen diffusion. Comparisons between the constant wind velocity and the variable wind velocity indicate that the variable wind velocity may cause a more dangerous situation since there has a larger FGC volume. More importantly, the wind condition has a non-negligible effect when considering the HMF along the radial direction. As the wind velocity increases, the distribution of the HMF along the radial direction is not Gaussian anymore when the distance between the release hole and the observation line exceeds to a critical value. This work can be a supplement of the research on the hydrogen release and diffusion and a valuable reference for the researchers.  相似文献   

13.
Ningbo's seaport hydrogen refueling station was used as the research object. The effects of different leakage angles, wind direction, roof shape, leakage hole diameters, temperature, and humidity on the diffusion of hydrogen leakage were studied by numerical simulation. The influence of leakage angle on hydrogen leakage is mainly reflected in the presence or absence of obstacles. The volume of the flammable hydrogen cloud was reduced by 31.16%, and the volume of the hazardous hydrogen cloud was reduced by 63.22% when there was no obstacle. The wind direction can significantly impact hydrogen leakage, with downwind and sidewind accelerating hydrogen discharge and reducing the risk. At the same time, headwind significantly increases the volume of the flammable hydrogen cloud. Compared with no wind, the volume of the flammable hydrogen cloud increased by 71.73% when headwind, but the volume of the hazardous hydrogen cloud decreased by 24.00%. If hydrogen shows signs of accumulation under the roof, the sloping roof can effectively reduce the hydrogen concentration under the roof and accelerate the hydrogen discharge. When the leakage angle θ = 90°, the sloping roof reduced the volume of the flammable hydrogen cloud by 11.74%. The leakage process was similar for different leak hole diameters in the no wind condition. The inverse of the molar fraction of hydrogen on the jet centerline was linearly related to the dimensionless axial distance of the jet in different cases. Using a least squares fit, the decay rate was obtained as 0.0039. In contrast, temperature and humidity have almost no effect on hydrogen diffusion. Hydrogen tends to accumulate on the lower surface of the roof, near the roof pillars and the hydrogen dispenser. In this paper, a set of hydrogen detector layout schemes was developed, and the alarm success rate was verified to be 83.33%.  相似文献   

14.
Although hydrogen refueling stations (HRSs) are becoming widespread across Japan and are essential for the operation of fuel cell vehicles, they present potential hazards. A large number of accidents such as explosions or fires have been reported, rendering it necessary to conduct a number of qualitative and quantitative risk assessments for HRSs. Current safety codes and technical standards related to Japanese HRSs have been established based on the results of a qualitative risk assessment and quantitative effectiveness validation of safety measures over ten years ago. In the last decade, there has been much development in the technologies of the components or facilities used in domestic HRSs and much operational experience as well as knowledge to use hydrogen in HRSs safely have been gained through years of commercial operation. The purpose of the present study is to conduct a quantitative risk assessment (QRA) of the latest HRS model representing Japanese HRSs with the most current information and to identify the most significant scenarios that pose the greatest risks to the physical surroundings in the HRS model. The results of the QRA show that the risk contours of 10?3 and 10?4 per year were confined within the HRS boundaries, whereas the risk contours of 10?5 and 10?6 per year are still present outside the HRS. Comparing the breakdown of the individual risks (IRs) at the risk ranking points, we conclude that the risk of jet fire demonstrates the highest contribution to the risks at all of the risk ranking points and outside the station. To reduce these risks and confine the risk contour of 10?6 per year within the HRS boundaries, it is necessary to consider risk mitigation measures for jet fires.  相似文献   

15.
Studies focused on the behavior of the hydrogen leakage and diffusion are of great importance for facilitating the large scale application of the hydrogen energy. In this paper, the hydrogen leakage and diffusion in six scenarios which including comparison of different leakage position and different wind effect are analyzed numerically. The studied geometry is derived from the hydrogen refueling station in China. Due to the high pressure in hydrogen storage take, the hydrogen leakage is momentum dominated. The hydrogen volume concentration with the variation of the leakage time in different scenarios is plotted. More importantly, profiles of the flammable gas cloud at the end of the leakage are quantitatively studied. Results indicate that a more narrow space between the leakage hole and the obstacle and a smaller contact area with the obstacle make the profile of the flammable gas cloud more irregular and unpredictable. In addition, results highlight the wind effect on the hydrogen leakage and diffusion. Comparing with scenario which the wind direction consistent with the leakage direction, the opposite wind direction may result in a larger profile of the flammable gas cloud. With wind velocity increasing, the profile of the flammable gas cloud is confined in a smaller range. However, the presence of the wind facilitates the form of the recirculation zone near the obstacle. With an increase of the wind velocity, the recirculation zone moves downward along the obstacle. Thus, the hydrogen accumulation is more prominent near the obstacle.  相似文献   

16.
Air driven gas boosters are often deployed in small scale compression systems. Manufacturers specifications, reporting outlet flow for a fixed inlet pressure, do not reflect the batch operation from a limited source storage. Thus, the dynamic variation of critical process parameters such as efficiency, temperature and flow are not documented.Using a hydrogen refueling station demonstrator, the data from more than 20′000 compression cycles is compiled and analyzed. Experimentally derived correlations are determined for an air driven gas booster feeding a cascade storage. A specific analysis of the clearance volume and the working air pressure is introduced.An engineering tool was developed in MATLAB for performance forecasting. It allows the user to simulate the process trends with an accuracy of ±5%. In the context of a hydrogen refueling station, duration, temperature, compression cycles and air consumption data can be used for process management and maintenance planning.  相似文献   

17.
Creating a distribution network and establishing refueling stations arises as an important problem in order to meet the refueling needs of hydrogen fuel cell vehicles. In this study, a multi-objective and multi-period hydrogen refueling station location problem that can take into account long-term planning decisions is proposed. Firstly, single objective mathematical models are proposed for the problem by addressing the cost, risk and population convergence objectives. Afterwards, a goal programming model is proposed and the results that will arise when three objectives are taken into consideration at the same time are examined. A risk analysis approach applied for each location alternative is considered in order to handle risk concerns about the hydrogen refueling station settlement. A case study is conducted in Adana, one of the crowded cities in Turkey, to determine the long-term location network plan. Covered population, operational risk and earthquake risks are used as input of the risk analysis method. The case study results show that the goal programming model covers the area with 77 hydrogen refueling stations by different types and capacities during the years from 2020 to 2030. In addition, a computational study is carried out with different alternative scenarios (different number of consumption nodes and all parameters in the model). The computational study results show that the highest deviations from the optimal solution on the model are observed in the distances between consumption nodes and targeted service area parameters which affect about 50% of absolute deviations on average. According to results, the proposed approach selects the station location suitable for the expected changes over the years.  相似文献   

18.
A dynamic simulation approach to investigate an optimal hydrogen refueling method is proposed. The proposed approach simulates a transient temperature, pressure and mass flow rate of hydrogen flowing inside filling equipment in an actual station during the refueling process to an Fuel Cell Vehicle (FCV) tank. The simulation model is the same as in an actual hydrogen refueling station (HRS), and consists of a Break-Away, a hose, a nozzle, pipes and an FCV tank. Therefore, we can set actual configurations and thermal properties to the simulation model, and then simulate the temperature, pressure and mass flow rate of hydrogen passing through each position based on the supply conditions (temperature and pressure) at the Break-Away. In this study, the simulated temperature, pressure and mass flow rate are compared with the corresponding experimental data. Therefore, we show that the dynamic simulation approach can accurately obtain those values at each position during the refueling process and is an effective step in proposing the optimal refueling method.  相似文献   

19.
An operation strategy known as two-tier “pressure consolidation” of delivered tube-trailers (or equivalent supply storage) has been developed to maximize the throughput at gaseous hydrogen refueling stations (HRSs) for fuel cell electric vehicles (FCEVs). The high capital costs of HRSs and the consequent high investment risk are deterring growth of the infrastructure needed to promote the deployment of FCEVs. Stations supplied by gaseous hydrogen will be necessary for FCEV deployment in both the near and long term. The two-tier pressure consolidation method enhances gaseous HRSs in the following ways: (1) reduces the capital cost compared with conventional stations, as well as those operating according to the original pressure consolidation approach described by Elgowainy et al. (2014) [1], (2) minimizes pressure cycling of HRS supply storage relative to the original pressure consolidation approach; and (3) increases use of the station's supply storage (or delivered tube-trailers) while maintaining higher state-of-charge vehicle fills.  相似文献   

20.
As the popularity of fuel cell vehicles continues to rise in the global market, production and supply of low-carbon hydrogen are important to mitigate CO2 emissions. We propose a design for a hydrogen refueling station with a proton exchange membrane electrolyzer (PEM-EL)-based electrolysis system (EL-System) and photovoltaic generation (PV) to supply low-carbon hydrogen. Hydrogen is produced by the EL-System using electricity from PV and the power grid. The system was formulated as a mixed integer linear programming (MILP) model to allow analysis of optimal operational strategies. Case studies with different objective functions, CO2 emission targets, and capacity utilization of the EL-System were evaluated. Efficiency characteristics of the EL-System were obtained through measurements. The optimized operational strategies were evaluated with reference to three evaluation indices: CO2 emissions, capacity utilization, and operational cost of the system. The results were as follows: 1) Regardless of the objective function, the EL-System generally operated in highest efficiency state, and optimal operation depended on the efficiency characteristics of the EL-System; 2) mitigation of CO2 emissions and increase in capacity utilization of the EL-System required trade-offs; and 3) increased capacity utilization of the EL-System showed two opposing effects on hydrogen retail price.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号