首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several pressure and temperature reductions occur along gas transmission lines. Since the pressure and temperature conditions of the natural gas in the pipeline are often close to the dew point curve, liquid dropout can occur. Injection of hydrogen into the natural gas will change the phase envelope and thus the liquid dropout. This condensation of the heavy hydrocarbons requires continuous operational attention and a positive effect of hydrogen may affect the decision to introduce hydrogen. In this paper we report on calculations of the amount of condensate in a natural gas and in this natural gas mixed with 16.7% hydrogen. These calculations have been performed at conditions prevailing in gas transport lines. The results will be used to discuss the difference in liquid dropout in a natural gas and in a mixture with hydrogen at pressure reduction stations, at crossings under waterways, at side-branching, and at separators in the pipelines.  相似文献   

2.
凝析气藏在气田开发中占有重要地位,具有较高的经济价值。严格执行工业气流标准是确保气藏地质储量具有开发效益的前提,而DZ/T0217—2005《石油天然气储量计算规范》没有明显体现凝析油对凝析气藏工业气流的影响。根据凝析气藏工业气流计算模型,以西部某凝析气藏各项参数情况为例,定量分析了各种因素对凝析气藏工业气流的影响。结果表明:①与干气藏相比,凝析气藏的工业气流还受凝析油价格、凝析油含量和轻烃回收费的影响;②凝析气藏的工业气流随天然气价格、凝析油价格、凝析油含量的增加而减小,随气藏埋藏深度、轻烃回收费、递减率的增加而增加;③最敏感因素是气藏埋藏深度,其次是天然气价格、凝析油价格和凝析油含量.轻烃回收费和递减率的变化影响较小。本文提出的方法也适用于含硫化氢等复杂成分气藏工业气流的影响因素分析。  相似文献   

3.
A comprehensive life cycle assessment (LCA) is reported for five methods of hydrogen production, namely steam reforming of natural gas, coal gasification, water electrolysis via wind and solar electrolysis, and thermochemical water splitting with a Cu–Cl cycle. Carbon dioxide equivalent emissions and energy equivalents of each method are quantified and compared. A case study is presented for a hydrogen fueling station in Toronto, Canada, and nearby hydrogen resources close to the fueling station. In terms of carbon dioxide equivalent emissions, thermochemical water splitting with the Cu–Cl cycle is found to be advantageous over the other methods, followed by wind and solar electrolysis. In terms of hydrogen production capacities, natural gas steam reforming, coal gasification and thermochemical water splitting with the Cu–Cl cycle methods are found to be advantageous over the renewable energy methods.  相似文献   

4.
Preferable conditions for the thermal decomposition of hydrogen sulfide, one step in thermochemical water splitting cycles of metal-sulfur families, are described. To separate hydrogen from hydrogen sulfide after condensation of sulfur a pressure swing adsorption on zeolite or carbon molecular sieves is proposed which may also be suitable for separating hydrogen sulfide from other gas mixtures such as natural gas and noble gas.  相似文献   

5.
We are reporting in this study the hydrogen permeation in the lattice structure of a steel pipeline designed for natural gas transportation by investigating the influence of blending gaseous hydrogen into natural gas flow and resulted internal pressure values on the structural integrity of cracked pipes. The presence of cracks may provoke pipeline failure and hydrogen leakage. The auto-ignition of hydrogen leaks, although been small, leads to a flame difficult to be seen. The latter makes such a phenomenon extremely dangerous as explosions became very likely to happen. In this paper, a reliable method is presented that can be used to predict the acceptable defect in order to reduce risks caused by pipe failure due to hydrogen embrittlement. The presented model takes into account the synergistic effects of transient gas flow conditions in pipelines and hydrogen embrittlement of steel material due to pressurized hydrogen gas permeation. It is found that blending hydrogen gas into natural gas pipelines increases the internal load on the pipeline walls due to overpressure values that may be reached in a transient gas flow regime. Also, the interaction between transient hydrogen gas flow and embrittlement of API 5L X52 steel pipeline was investigated using Failure Assessment Diagram (FAD) and the results have shown that transient flow enhances pipeline failure due to hydrogen permeation. It was shown that hydrogen embrittlement of steel pipelines in contact with the hydrogen environment, together with the transient gas flow and significantly increased transient pressure values, also increases the probability of failure of a cracked pipeline. Such a situation threatens the integrity of high stress pipelines, especially under the real working conditions of hydrogen gas transportation.  相似文献   

6.
Hydrogen has been suggested as a fuel gas to eventually replace natural gas in commercial and residential heating and cooking applications. After transmission from a production site to a city gate, the delivery of hydrogen would be through the pipelines of conventional (natural gas) distribution systems. It would be combusted in appliances with suitably modified burners. Through a recent technology survey sponsored by NASA (Marshall Space Flight Center, Huntsville, Alabama) and through experimental and analytical efforts at the Institute of Gas Technology, we have assembled preliminary technical assessments for the distribution and utilization of hydrogen in this role.

The flow rates and pressures of a gas distribution system using hydrogen probably will be different from those for natural gas. Increased operating pressures are predicted for hydrogen flow conditions of equivalent (to natural gas) energy delivery. Procedures will have to accommodate various safety aspects, but leakage is not considered an especially severe problem with hydrogen.

Operating conditions for appliance burners will be different for hydrogen in terms of primary air and probably delivery pressures. Flashback and noisy operation must be prevented. Replacement of burners for hydrogen operation is possible.  相似文献   


7.
The first applications of hydrogen in a natural gas grid will be the admixing of low concentrations in an existing distribution grid. For easy quality and process control, it is essential to monitor the hydrogen concentration in real time, preferably using cost effective monitoring solutions. In this paper, we introduce the use of a platinum based hydrogen sensor that can accurately (at 0.1 vol%) and reversibly monitor the concentration of hydrogen in a carrier gas. This carrier gas, that can be nitrogen, methane or natural gas, has no influence on the accuracy of the hydrogen detection. The hydrogen sensor consists of an interdigitated electrode on a chip coated with a platinum nanocomposite layer that interacts with the gas. This chip can be easily added to a gas sensor for natural gas and biogas that was already developed in previous research. Just by the addition of an extra chip, we extended the applicability of the natural gas sensor to hydrogen admixing. The feasibility of the sensor was demonstrated in our own (TNO) laboratory, and at a field test location of the HyDeploy program at Keele University in the U.K.  相似文献   

8.
The natural gas flowing through transmission pipeline is impure and has a wide range of non-hydrocarbons components at different concentrations like hydrogen. The presence of hydrogen in the natural gas mixture influences its properties and flow performance. The effect of hydrogen concentration on the natural gas flowing through a transportation pipeline has not been adequately investigated and widely comprehended. In this paper, several mixtures flow through pipeline include typical natural gas and hydrogen at different concentrations up to 10% are evaluated to demonstrate their impact on the flow assurance and the natural gas properties. The string Ruswil – Griespass part from the Transitgas project with 94 km length is simulated applying Aspen Hysys Version 9 and validated using Aspen Plus. The simulation specifications were 1.228 1 106 kg/h mass flowrate, 1200 mm and 1164 mm the outer and inner diameters, and 75 bar and 29.4 °C operating pressure, and temperature. The effect of different hydrogen concentrations has been examined and the differences from the typical mixture are estimated. The results show that the presence of hydrogen in the natural gas mixture reduces its density, 10% hydrogen content records 11.78% reduction in the density of typical natural gas. Interestingly, it has been found that up to 2% of hydrogen concentration turns in elevating the viscosity of the typical natural gas while the viscosity decreases at the point that hydrogen content increases above 2%. In addition, the pressure losses over the transmission pipeline increases due to the presence of hydrogen, 10% hydrogen concentration turns in 5.39% increase in the pressure drop of the natural gas mixture. Also, the temperature drop across the pipeline decreases as the hydrogen concentration increases; 10% hydrogen content can result in a 6.14% reduction in the temperature drop across the pipeline. As well as, the findings prove that the hydrogen strongly impacts the phase envelope by changing from size symmetric to size asymmetric diagram. The effect of pipeline elevations has been investigated by changing the elevation up to 25 m uphill and 25 m downhill. The results state that increase the pipeline elevation turns in increasing the pressure losses over the pipeline length. Along with this, the results illustrate that the presence of hydrogen in the mixture elevates the critical pressure and reduces the critical temperature.  相似文献   

9.
Using skid-mounted natural gas to hydrogen generator in hydrogen refueling station can significantly reduce the cost of hydrogen. In 2021, China successfully built the first 250 Nm3/h on-site skid-mounted natural gas to hydrogen generator, which was successfully debug-ed in Foshan, providing hydrogen products with purity ≥99.999% for FCVs. This paper summarized the technological process and development, analyzed the risk and the safety design of skid-mounted natural gas to hydrogen generator. Several key factors affecting compactness are analyzed, including process and technical route, reforming reformer and catalyst, heat exchange network, heat exchanger and steam generation system, PSA unit and overall integrated design, etc. In addition, innovative strategies to optimize the compactness of the device are given from the aspects of process flow, reforming reformer and steam generation system.The suggestions are put forward for the development and application of on-site skid-mounted natural gas to hydrogen generator.  相似文献   

10.
It appears to be the most economical means of transporting large quantities of hydrogen over great distances by the existing natural gas pipeline network. However, the leakage and diffusion behavior of urban hydrogen blended natural gas and the evolution law of explosion characteristics are still unclear. In this work, a Computational Fluid Dynamics three-dimensional simulation model of semi-confined space in urban streets is developed to study the diffusion process and explosion characteristics of hydrogen-blended natural gas. The influence mechanism of hydrogen blending ratio and ambient wind speed on the consequences of explosion accident is analyzed. And the dangerous area with different environmental wind effects is determined through comparative analysis based on the most dangerous scenarios. Results indicate that the traffic flow changes the diffusion path of the jet, the flammable gas cloud forms a complex profile in many obstacles, high congestion level lead to more serious explosion accidents. Wind effect keeps the flammable gas cloud near the vehicle flow, the narrow gaps between the vehicles aggravate the expansion of the flammable gas cloud. When the wind direction is consistent with the leakage direction, hydrogen blended natural gas is gathered in the recirculation zone due to the vortex effect, which results in more serious accident consequences. With the increase in hydrogen blending ratio, the higher content of H and OH in the gas mixture significantly increases the premixed burning rate, the maximum overpressure rises rapidly when the hydrogen blend level increases beyond 40%. The results can provide a basis for construction safety design, risk assessment of leakage and explosion hazards, and emergency response in hydrogen blended natural gas distribution systems.  相似文献   

11.
In this article, we propose a novel system to effectively deploy an integrated fuel processing system for hydrogen sulfide and natural gas resources available in the Black Sea to be used for a quick transition to the hydrogen economy. In this regard, the proposed system utilizes offshore wind and offshore photovoltaic power plants to meet the electricity demand of the electrolyzer. A PEM electrolyzer unit generates hydrogen from hydrogen sulfide that is available in the Black Sea deep water. The generated hydrogen and sulfur gas from hydrogen sulfide are stored in high-pressure tanks for later use. Hydrogen is blended with natural gas, and the blend is utilized for industrial and residential applications. The investigated system is modeled with the Aspen Plus software, and hydrogen production, blending, and combustion processes are analyzed accordingly. With the hydrogen addition up to 20% in the blend, the carbon dioxide emissions of combustion decrease from 14.7 kmol/h to 11.7 kmol/h, when the annual cost of natural gas is reduced from 9 billion $ to 8.3 billion $. The energy and exergy efficiencies for the combustion process are increased from 84% to 97% and from 62% to 72%, respectively by a 20% by volume hydrogen addition into natural gas.  相似文献   

12.
An experimental study on the combustion and emission characteristics of a direct-injection spark-ignited engine fueled with natural gas/hydrogen blends under various ignition timings was conducted. The results show that ignition timing has a significant influence on engine performance, combustion and emissions. The interval between the end of fuel injection and ignition timing is a very important parameter for direct-injection natural gas engines. The turbulent flow in the combustion chamber generated by the fuel jet remains high and relative strong mixture stratification is introduced when decreasing the angle interval between the end of fuel injection and ignition timing giving fast burning rates and high thermal efficiencies. The maximum cylinder gas pressure, maximum mean gas temperature, maximum rate of pressure rise and maximum heat release rate increase with the advancing of ignition timing. However, these parameters do not vary much with hydrogen addition under specific ignition timing indicating that a small hydrogen fraction addition of less than 20% in the present experiment has little influence on combustion parameters under specific ignition timing. The exhaust HC emission decreases while the exhaust CO2 concentration increases with the advancing of ignition timing. In the lean combustion condition, the exhaust CO does not vary much with ignition timing. At the same ignition timing, the exhaust HC decreases with hydrogen addition while the exhaust CO and CO2 do not vary much with hydrogen addition. The exhaust NOx increases with the advancing of ignition timing and the behavior tends to be more obvious at large ignition advance angle. The brake mean effective pressure and the effective thermal efficiency of natural gas/hydrogen mixture combustion increase compared with those of natural gas combustion when the hydrogen fraction is over 10%.  相似文献   

13.
Previous experimental results on full-scale jet fires induced by high-pressure hydrogen/natural gas transient leakage can only be suitable for solving practical engineering problems, or testing the limitation of previous models. Thus, this paper presents a theoretical framework for the high-pressure hydrogen/natural gas leakage and the subsequent jet fire. The proposed framework consists of a transient leakage model, a notional nozzle model, a jet flame size model, a radiative fraction correlation and a line source radiation model. The framework is validated by comparing the model predictions and experimental measurements of mass flow rate, total flame height and thermal radiation field of hydrogen, natural gas, hydrogen/natural gas mixture jet fires with a flame height up to 100 m. The comparison shows that the theoretical framework can give considerable predictions to properties of full-scale jet fires induced by high-pressure hydrogen/natural gas transient leakage.  相似文献   

14.
As a form of clean and renewable energy, hydrogen has received much attention recently. However, industrial hydrogen production is primarily via conversion of natural gas, which consumes a large amount of energy and emits large volumes of greenhouse gases. Electrochemical water electrolysis is a promising, pollution-free method for the production of hydrogen from water. Efficient, cost-effective, stable and abundant catalysts that can drive hydrogen production in water with minimal electrical bias are a major goal towards achieving electrolysis on a large scale. Recently, tungsten oxide-based materials have emerged as one of the most promising electrocatalytic compounds, due to their activity, low cost and durability in both acid and base conditions. There are often oxygen vacancies in metal oxides, whether intentional or not, which can potentially promote the water electrolysis. In this review, we provide an overview of tungsten oxide-based materials used for electrocatalytic water splitting. In addition, mechanisms to improve the electrocatalytic activities of oxygen vacant tungsten oxide are summarized and discussed, with proposals for future research. This review article will provide a valuable resource for scientists pursuing materials for electrochemical water splitting.  相似文献   

15.
在缸内直喷火花点火发动机上开展了天然气掺混0%-18%氢气的混合燃料不同点火时刻下的试验研究。结果表明:对于给定的喷射时刻和喷射持续期,点火时刻对发动机性能、燃烧和排放有较大影响,喷射结束时刻与点火时刻的间隔对直喷天然气发动机极为重要,喷射结束时刻与点火时刻的间隔缩短时,混合气分层程度高,燃烧速率快,热效率高。最大放热率等燃烧特征参数随点火时刻的提前而增加。HC排放随点火时刻的提前而下降,CO2和NOx排放随点火时刻的提前而增加,NOx排放的增加在大点火提前角下更明显。掺氢可降低HC排放,对CO和CO2排放影响不大。掺氢量大于10%时可提高天然气发动机热效率。  相似文献   

16.
Displacing pipeline natural gas with renewable hydrogen is a promising way to reduce the emission of carbon dioxide, which is a major greenhouse gas. However, due to significantly differing characteristics of hydrogen and natural gas, such as flame speed, adiabatic flame temperature and stability limits, the combustion performance of hydrogen/natural gas mixture differs from pure natural gas. From the perspective of residential end users, a key question is: how much hydrogen can be injected into the pipeline natural gas without influencing the performance of the residential burners? A representative cooktop burner is selected to study the influence of hydrogen addition on the combustion and cooking performance. Flashback limits, ignition time, flame characteristics, cooking performance, combustion noise, burner temperature, and various emissions (NO, NO2, N2O, CO, unburned hydrocarbon (UHC), NH3) are evaluated for different levels of hydrogen addition. According to the experimental results, the combustion performance of the cooktop burner is not significantly affected with up to about 15% hydrogen addition by volume, which shows the feasibility of utilizing hydrogen on existing cooking appliances without any modification. The experiment methodologies and results in this study will serve as a reference for future test and emission regulation standards on domestic burners.  相似文献   

17.
Cyclic variations of direct-injection combustion fueled with natural gas–hydrogen fuel blends were experimentally studied using a constant volume vessel. Direct-injection combustion was realized by injecting the high-pressure fuel into the vessel. Flame propagating photographs and pressure history in the vessel were recorded at various hydrogen volumetric fractions in the fuel blends (from 0% to 40%) under the same lean-burn conditions where the overall equivalence ratios are 0.6 and 0.8, respectively. The effect of fuel–air mixture inhomogeneous distribution and hydrogen addition on the cyclic variations was analyzed via flame development photographs and pressure-derived combustion parameters. The results indicated that the cyclic variations were initiated at the early stage of flame development. The flame kernel is closely concentric to the spark electrode and flame pattern has less irregular with hydrogen addition. Direct-injection natural gas combustion can achieve the stable lean combustion along with low cyclic variations due to the mixture stratification in the vessel. The cyclic variations decreased with the increase of hydrogen addition and this trend is more obvious at ultra-lean-burn condition. Hydrogen addition weakened the effect from turbulent flow on flame propagating process, thus reduce the cyclic variations related to the gas flow. There exists interdependency between the early combustion stage and the subsequent combustion process for direct-injection combustion.  相似文献   

18.
Buried pipelines are one method of conservation transfer for widely used gases such as natural gas and hydrogen. The safety of these pipelines is of great importance because of the potential leakage risks posed by the flammable gas and the special properties of the hydrogen mixture. Estimating the leakage behavior and quantifying the diffusion range outside the pipeline are important but challenging goals due to the hydrogen mixture and presence of soil. This study provides essential information about the diffusion behavior and concentration distribution of underground hydrogen and natural gas mixture leakages. Therefore, a large-scale experimental system was developed to simulate high-pressure leaks of hydrogen mixture natural gas from small holes in three different directions from a pipeline buried in soil. The diffusion of hydrogen-doped natural gas in soil was experimentally measured under different conditions, such as different hydrogen mixture ratios, release pressures, and leakage directions. The experimental results verified the applicability of the gas leakage mass flow model, with an error of 6.85%. When a larger proportion of a single component was present in the hydrogen-doped natural gas, the leakage pressure showed a greater diffusion range. In addition, the diffusion range of hydrogen-doped natural gas in the leakage direction was larger at 3 o'clock than that at 12 o'clock. The hydrogen blend carried methane and diffused, which shortened the methane saturation time. Moreover, a quantitative relationship between the concentration of hydrogen-doped natural gas and the diffusion distance over which the hydrogen-doped natural gas reached the lower limit of the explosion was obtained by quantitative analysis of the experimental data.  相似文献   

19.
Hydrogen energy has the advantages of renewable, clean and high energy density, which is considered as the most potential secondary energy in the 21st century. But transportation is a major constraint on development of hydrogen. A possible solution is to inject hydrogen into natural gas network for transport. Due to the obvious differences in the properties of natural gas and hydrogen, it is necessary to establish natural gas pipeline model with hydrogen injection to explore the influence of hydrogen on pipeline. The line-pack of natural gas network can improve the flexibility of the system to deal with uncertainties, and the line-pack has a significant impact on the dynamic characteristics of the natural gas network under the change of external conditions. When hydrogen is injected into the natural gas network, the line-pack is affected by both pressure and hydrogen mixture ratio, and the line-pack influence on the dynamic characteristics of the network is more complicated. In this paper, a natural pipe network with hydrogen injection is established based on the finite difference method, and simulation is carried out under different situations to explore the influence of different line-pack on the dynamic characteristics of the natural gas network. The results show that the response speed of hydrogen mixture ratio is faster under the condition of low line-pack, which is conducive to reducing the risk of hydrogen embrittlement when the hydrogen mixture ratio surges for a short time. However, the pressure loss caused by the increase of flow can be reduced in the high line-pack state.  相似文献   

20.
Hydrogen is seen as an important energy carrier for the future which offers carbon free emissions. At present it is mainly used in refueling hydrogen fuel cell cars. However, it can also be used together with natural gas in existing gas fired equipment with the benefit of lower carbon emissions. This can be achieved by introducing hydrogen into existing natural gas pipelines. These pipelines are designed, constructed and operated to safely transport natural gas, which is mostly methane. Because hydrogen has significantly different physical and chemical properties than natural gas, any addition of hydrogen my adversely affect the integrity of the pipeline network, increasing the likelihood and consequences of an accidental leak. Since it increases the likelihood and consequences of an accidental leak, it increases the risk of explosion. In order to address various safety issues related to addition of hydrogen in to a natural gas pipeline a EU project NATURALHY was introduced. A major objective of the NATURALHY project was to identify how much hydrogen could be introduced into the natural gas pipeline network. Such that it does not adversely impact the safety of the pipeline network and significantly increase the risk to the public. This paper reports experimental work conducted to measure the explosion overpressure generated by ignition of hydrogen-methane-air mixture in a highly congested region consisting of interconnected pipes. The composition of the methane/hydrogen mixture used was varied from 0% hydrogen (100% methane) to 100% hydrogen (0% methane) to understand its effect on generated explosion overpressure. It was observed that the maximum overpressures generated by methane-hydrogen mixtures with 25% (by volume) or less hydrogen content are not likely to be significantly greater than those generated by methane alone. Therefore, it can be concluded that the addition of less than 25% by volume of hydrogen into pipeline networks would not significantly increase the risk of explosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号