首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Hong Kong, the Environmental Protection Department (HKEPD) has launched an indoor air quality (IAQ) certification scheme to promote an acceptable IAQ in workplaces. However, the associated uncertainties and measurement efforts have not been detailed for practical measurement in indoor spaces. In this study, indoor carbon dioxide (CO2) concentration is selected as an indicator of the IAQ to investigate the probable errors and measurement efforts in different sampling schemes regarding the sampling point density. In particular, a one-year measurement for sample-spatial average indoor CO2 concentration at 17 sampling locations in a typical large office (floor area=1200 m2) has been used to evaluate the probable errors of the sample-spatial average concentrations using different sampling point densities. The result shows that the measured concentration at a single sampling point could not be representative for the space and more than one sampling locations would be required in order to increase the measurement accuracy. Mathematical expressions for the sample-spatial average concentration at a confidence level at certain sampling point densities are proposed. When doubled the required measurement points, it was found that the probability of obtaining a measured CO2 concentration at the confidence level of 95% could be increased from 70% to 90%, as compared with the current sampling practice. It is recommended to specify the measurement uncertainties in future codes so that effort for IAQ measurements in indoor spaces could be determined for practical strategies.  相似文献   

2.
Continuous sampling is one of the common approaches for assessing indoor pollutant level. It is believed that the longer the measurement time, the higher the accuracy and confidence level of the measurement can be achieved. In 2003, the Hong Kong Environmental Protection Department (HKEPD) launched an Indoor Air Quality (IAQ) certification scheme to promote an acceptable IAQ in workplaces. However, measurement efforts and uncertainties associated with the sampling method have not been addressed. Alternative sampling schemes taking shorter measurements in the sampling period were proposed in some circumstances. In this study, the average carbon dioxide (CO2) concentration of a workplace is selected as an indicator of the indoor air quality to investigate the probable errors and measurement efforts in four sampling schemes, regarding the sampling period: in Scheme A, it is from a continuous sampling throughout the measurement; in Scheme B, it is from two sampling periods of two equal sessions of the measurement; in Scheme C, it is from two structural sampling periods of the two sessions; and in Scheme D, the average concentration is from four sampling periods in four equal sessions of the measurement. In particular, a year-round indoor CO2 concentration at 17 locations in a typical office in Hong Kong was used to evaluate the probable errors using these four sampling schemes. At certain confidence levels, the required measurement times of the alternative sampling schemes (Schemes B, C, D) were evaluated and compared with that of an 8-hour continuous one (Scheme A). It was found that Scheme C would offer a reduction of measurement effort up to 30%. It is recommended to specify the uncertainties and efforts of measurement in future codes, and to consider these sampling schemes in determining practical strategies for IAQ measurement.  相似文献   

3.
Adjustment of the indoor air temperature and relative humidity set points for energy conservation is adopted in many air-conditioned offices in the subtropics. This study examines the environmental risks in an air-conditioned office with a ‘readjusted’ thermal environment from the perspective of the probable airborne bacteria level exceeding certain limits. In particular, a cross-sectional study of bacteria concentrations in 422 air-conditioned offices in Hong Kong was conducted, and a mathematical expression was proposed to correlate the indoor bacteria level with the indoor air temperature and relative humidity in an air-conditioned office. With the proposed correlation, the probability of an air-conditioned office having an unsatisfactory airborne bacteria level could be determined. The model results were verified with the measurement results from some other studies. This model would be a useful tool for preliminary assessment of the environmental risks, regarding the airborne bacteria level while balancing some energy conservation measures, in an air-conditioned office in the subtropics. The study also provides a template for developing an environmental risk assessment model in air-conditioned spaces elsewhere.  相似文献   

4.
上海市办公楼室内空气品质的测试和分析   总被引:7,自引:1,他引:7  
本文利用上海市六幢大楼的实测数据对上海市办公楼室内空气品质环境作了客观和主观两方面的评价,经分析可知,上海市办公楼内室内空气品质环境在客观评价中未达标的情况比较严重,而主观调研的结果也显示,上海市办公楼室内空气品质的可接受率远远低于ASHRAE62-1989所提出的可接受室内空气品质应满足80%的可接受率,实测说明,上海办公楼内仍然存在建筑病综合症(SBS)。同时本文强调基于“可感受的可接受的室内空气品质”这一指标,主观评价良好应是建筑物的设计人员、建造者及管理人员不懈追求的目标。  相似文献   

5.
Sekhar SC  Tham KW  Cheong KW 《Indoor air》2003,13(4):315-331
An integrated indoor air quality (IAQ)-energy audit methodology has been developed in this study in Singapore, which provides a rigorous and systematic method of obtaining the status-quo assessment of an 'IAQ signature' in a building. The methodology entails a multi-disciplinary model in obtaining measured data pertaining to different dimensions within the built environment such as the physical, chemical, biological, ventilation, and occupant response characteristics. This paper describes the audit methodology and presents the findings from five air-conditioned office buildings in Singapore. The research has also led to the development of an indoor pollutant standard index (IPSI), which is discussed in this paper. Other performance indicators such as, the ventilation index and the energy index as well as the building symptom index (BSI) are also presented and discussed in the context of an integrated approach to IAQ and energy. Several correlation attempts were made on the various symptoms, indoor air acceptability, thermal comfort, BSI and IPSI, and while BSI values are found to correlate among them as well as with IAQ and THERMAL COMFORT acceptability, no such correlation was observed between BSI and IPSI. This would suggest that the occupants' perception of symptoms experienced as well as environmental acceptability is quite distinct from IAQ acceptability determined from empirical measurements of indoor pollutants, which reinforces the complex nature of IAQ issues.  相似文献   

6.
Classification of contaminated land is important for risk assessment and so it is vital to understand and quantify all of the uncertainties that are involved in the assessment of contaminated land. This paper uses a case study to compare two methods for assessing the uncertainty in site investigations (uncertainty of individual measurements, including that from sampling, and uncertainty of the mean value of all measurements within an area) and how the different methods affect the decisions made about a site. Using the ‘uncertainty of the mean value’ there is shown to be no significant possibility of ‘significant harm’ under UK guidance at one particular test site, but if you consider the ‘uncertainty of the measurements’ a significant proportion (50%) of the site is shown to be possibly contaminated. This raises doubts as to whether the current method using ‘uncertainty of the mean’ is sufficiently robust, and suggests that ‘uncertainty of measurement’ information may be preferable, or at least beneficial when used in conjunction.  相似文献   

7.
The lack of an effective indoor air quality (IAQ) metric causes communication concerns among building tenants (the public), building managers (decision-makers), and IAQ investigators (engineers). The Indoor Air Pollution Index (IAPI) is developed for office buildings to bridge this communication discord. The index, simple and easily understood, employs the range of pollutant concentrations and concentrations in the subject building to estimate a unitless single number, the IAPI, between 0 (lowest pollution level and best IAQ) and ten (highest pollution level and worst IAQ). The index provides a relative measure of indoor air pollution for office buildings and ranks office indoor air pollution relative to the index distribution of the US office building population. Furthermore, the index associates well with occupant symptoms, percentage of occupants with persistent symptoms. A tree-structured method is utilized in conjunction with the arithmetic mean as the aggregation function. The hierarchical structure of the method renders not only one index value, but also several sub-index values that are critical in the study of an office air environment. The use of the IAPI for IAQ management is illustrated with an example. The decomposition of the index leads to the ranking of sampled pollutants by their relative contribution to the index and the identification of dominant pollutant(s). This information can be applied to design an effective strategy for reducing in-office air pollution.  相似文献   

8.
Ventilation principles that integrate flexible and responsive elements have grown in popularity in office buildings due to increasing concerns about the impact of indoor environment quality on office workers' well-being and productivity, as well as concerns over the rising energy costs for space heating and cooling in the office building sector. Such advanced elements as underfloor air distribution (UFAD), passive swirl diffusers, and demand controlled ventilation have posed challenges to system design and operation. This paper is concerned with the development and implementation of a practical and robust optimization scheme, aiming to assist office building designers and operators to enhance thermal comfort and indoor air quality (IAQ) without sacrificing energy costs of ventilation. The objective function was constructed in a way attempting to aggregate and weight indices (for thermal comfort, IAQ, and ventilation energy usage assessment) into one indicator. The path taken was a simulation-based optimization approach by using computational fluid dynamics (CFD) techniques in conjunction with genetic algorithm (GA), with the integration of an artificial neural network (ANN) for response surface approximation (RSA) and for speeding up fitness evaluations inside GA loop.  相似文献   

9.
Treatment of fresh air in ventilation systems for air-conditioned offices consumes a significant amount of energy and affects the indoor air quality (IAQ). In this study, energy impact on the ventilation systems was examined against certain IAQ objectives for indoor airborne bacteria exposure risk in air-conditioned offices of Hong Kong. The relationship between thermal energy consumptions and indoor airborne bacteria exposure levels based on regional surveys was investigated. The thermal energy consumptions of ventilation systems operating for carbon dioxide (CO2) exposure concentrations between 800 and 1200 ppmv for typical office buildings and the corresponding failure probability against some target bacteria exposure levels were evaluated. The results showed that, for a reference indoor environment at a CO2 exposure concentration of 1000 ppmv, the predicted average thermal energy saving of ventilation system for a unit increment of the expected risk of unsatisfactory IAQ of 1% was 55 MJ m−2 yr−1 and for a unit decrement of 1%, the predicted additional thermal energy consumption was 58 MJ m−2 yr−1 respectively. This study would be a useful source of reference in evaluation of the energy performance of ventilation strategies in air-conditioned offices at a quantified exposure risk of airborne bacteria.  相似文献   

10.
Treatment of fresh air in ventilation systems for air-conditioning consumes a considerable amount of energy and affects the indoor air quality (IAQ). In this study, energy impact on ventilation systems was examined against certain IAQ objectives for indoor formaldehyde exposure risk in air-conditioned offices of Hong Kong. Thermal energy consumptions for ventilation systems and indoor formaldehyde exposure concentrations based on some regional surveys of typical offices in Hong Kong were reviewed. The thermal energy consumptions of ventilation systems operating for CO2 exposure concentrations between 800 ppmv and 1200 ppmv for typical office buildings and the corresponding formaldehyde exposure risks were evaluated. The results showed that, for a reference indoor environment at a CO2 exposure concentration of 1000 ppmv, the average thermal energy saving of ventilation system for a unit increment of the acceptable formaldehyde exposure limit of 1 h (loss of life expectancy of 0.0417 day) was 280 MJ m−2 yr−1; and for a unit decrement of the exposure limit of 1 h, an additional average thermal energy consumption of 480 MJ m−2 yr−1 was expected. This study would be a useful source of reference in evaluation of the energy performance of ventilation strategies in air-conditioned offices at a quantified exposure risk of formaldehyde.  相似文献   

11.
To maintain a healthful and secure indoor environment, it is crucial to design an effective indoor air quality (IAQ) sensor network and interpret sensor outputs for prompt IAQ controls. This paper introduces how a probability concept based inverse modeling method – the adjoint probability method – can be used to assist in designing a high-performance IAQ sensor network and identifying potential contaminant source locations for an entire building based on limited sensor outputs. The study proposes a new IAQ sensor network design and optimization method for buildings with one or more compartments on the basis of the probability calculation. With responses from optimized sensors, a two-stage integrated inverse prediction algorithm is developed that is able to identify a potential IAQ source zone (or room) in a building as well as an exact location within the room. The paper demonstrates the design of sensor networks and the application of the source identification algorithms for a residential dwelling. The case study verifies the feasibility, effectiveness and accuracy of the proposed sensor design method and the two-stage algorithm for indoor contaminant control.  相似文献   

12.
This paper reports a study of the subjective preference to daylit indoor environment of a residential room using conjoint analysis, which is a highly reputable method used to analyze the mutual relationships among different attributes. Seven influential attributes were selected in the view of daylight performance assessment. They include ‘general brightness’, ‘desktop brightness’, ‘perceived glare’, ‘sunlight penetration’, ‘quality of view’, ‘user friendliness of shading control’ and ‘impact on energy’. Each of them has two levels. A total of eight combinations (profiles) of attributes with various levels were established by adopting fractional factorial design. Subjects were asked to rank-order the eight profiles according to their preference in terms of daylit environment of a residential room. The study aims at finding out the relative impact of the seven selected attributes to the overall daylight performance and seeking an organized assessment method for a residential daylit environment. Conjoint analysis found that the seven attributes have importance level in the order of ‘quality of view’, ‘general brightness’, ‘impact on energy’, ‘user friendliness of shading control’, ‘perceived glare’, ‘desktop brightness’ and ‘sunlight penetration’.  相似文献   

13.
A rational method is presented to determine the locations within a building where the highest average concentrations of contaminants may occur. Using this procedure, the number of sampling points necessary for indoor air quality (IAQ) evaluation of a building is reduced to a minimum. Thus the time and cost necessary for building evaluation and analysis can be decreased. Experimental measurements made in a research house are presented to validate the method.  相似文献   

14.
Conventional heating, ventilation, and air conditioning (HVAC) systems are incapable of providing control over individual environments or adjusting fresh air supply based on the dynamic occupancy of individual rooms in an office building. This paper introduces the concept of distributed environmental control systems (DECS) and shows that improvement in indoor air quality (IAQ) and energy efficiency can be achieved by providing required amounts of fresh air directly to the individual office spaces through distributed demand controlled ventilation (DDCV). In DDCV, fresh air is provided to each micro-environment (room or cubicle) based on input from distributed sensors (CO2, VOC, occupancy, etc.) or intelligent scheduling techniques to provide acceptable IAQ for each occupant, rather than for groups or populations of occupants. In order to study DECS, a numerical model was developed that incorporates some of the best available models for studying building energy consumption, indoor air flow, contaminant transport and HVAC system performance. The developed model was applied to a DECS in a model office building equipped with a DDCV system. By implementing DECS/DDCV and intelligent scheduling techniques it is possible to achieve an improvement in IAQ along with a reduction in annual energy consumption compared to conventional ventilation systems.  相似文献   

15.
Different types of heating, ventilation, and air-conditioning (HVAC) systems consume different amounts of energy yet they deliver similar levels of acceptable indoor air quality (IAQ) and thermal comfort. It is desirable to provide buildings with an optimal HVAC system to create the best IAQ and thermal comfort with minimum energy consumption. In this paper, a combined system of chilled ceiling, displacement ventilation and desiccant dehumidification is designed and applied for space conditioning in a hot and humid climate. IAQ, thermal comfort, and energy saving potential of the combined system are estimated using a mathematical model of the system described in this paper. To confirm the feasibility of the combined system in a hot and humid climate, like China, and to evaluate the system performance, the mathematical model simulates an office building in Beijing and estimates IAQ, thermal comfort and energy consumption. We conclude that in comparison with a conventional all-air system the combined system saves 8.2% of total primary energy consumption in addition to achieving better IAQ and thermal comfort. Chilled ceiling, displacement ventilation and desiccant dehumidification respond consistently to cooling source demand and complement each other on indoor comfort and air quality. It is feasible to combine the three technologies for space conditioning of office building in a hot and humid climate.  相似文献   

16.
Based on analysis of uncertainty, this paper presents grey system theory to handle the “grey” characteristic of IAQ. Grey comprehensive analysis of indoor air quality reveals that we should pay more attention to the air purification and humidity control in the design and maintenance of HVAC. In order to represent grey characteristic of IAQ system, the educed grey IAQ models can identify the variation intervals of key IAQ model parameters that are lack of directly measurable messages in practical situations. Furthermore, grey assessment is an effective multifactor comprehensive assessment method that can express the integrative influence of contamination indexes on indoor air quality. We can determine the IAQ grade and make comparison according to the grey incidence matrix R.  相似文献   

17.
Recently, airtight envelope system has become popular in the design of office buildings to reduce heating and cooling loads. Maintaining allowable indoor air quality (IAQ) for such airtight buildings totally depends on mechanical ventilation systems. Subsequently, poor operation of the ventilation system in such office buildings causes ineffective removal of polluted indoor air, and displays a sign of “sick building syndrome” (SBS). User's perception is an important parameter for evaluating IAQ. A questionnaire study was carried out to investigate the prevalence of the SBS at a multistory centrally air-conditioned Airport Authority of India (AAI) building in the New Delhi city. Quantification of the perceptions of the users regarding IAQ was done by converting their responses to a SBS score. The quantified answers were then subjected to statistical analysis. Qualitative analysis of the questionnaire was carried out to evaluate relationships between SBS score and carbon dioxide (CO2) and other parameters related to building and work environment. Quantitative analysis of IAQ was also conducted by monitoring indoor concentrations of four pollutants, namely, nitrogen dioxide (NO2), sulphur dioxide (SO2), suspended particulate matter (SPM) and carbon monoxide (CO). Concentrations of pollutants were complying with IAQ standards as given by ASHRAE and WHO. The SBS was higher on the third floor as compared to other floors and the control tower. The main symptoms prevailing were headache (51%), lethargy (50%), and dryness in body mucous (33%). The third floor and the control tower were affected by infiltration, mainly from entrance doors. A direct relation between the average SBS score and CO2 concentration was found, i.e., the average SBS score increased with CO2 concentration and vice versa, clearly signifying the usefulness of SBS score in IAQ.  相似文献   

18.
The indoor air quality (IAQ) programme of the World Health Organization Regional office for Europe was initiated in the mid-seventies when it was realized that over 70% of the general population spends its time indoors in homes, office buildings, schools, hospitals, transportation means, etc. The first meting of experts on health aspects related to IAQ was convened in 1979, being probably the first international meeting on IAQ with participation from eastern and western Europe as well as from North America. Seven meetings followed between 1982 and 1990, at which the “sick building” syndrome, IAQ research, formaldehyde and radon, organic pollutants, biological contaminants, combustion products, and mineral fibres were discussed. A ninth meeting on sources, control and mitigation is planned for 1991.  相似文献   

19.
Whether one considers the issues related to office workers' well-being and productivity or the issues from an energy and environmental perspective, there are clear evidences in favor of improving the quality of office environment. Part I of this paper proposed a simulation-based optimization approach by using computational fluid dynamics (CFD) techniques in conjunction with genetic algorithm (GA), with the integration of an artificial neural network (ANN) for response surface approximation (RSA) and for speeding up fitness evaluations inside GA loop. In this part, the results from data preparation for ANN model construction, ANN training and testing, and sensitivity analysis (regarding the impact of weighting factors in the objective function on the optimization results) are presented. Final optimization results indicate that the present choices of objective function and optimization approach are able to result in great improvement in the design and operation of ventilation systems in an office environment, with the goal of enhancing the thermal comfort and indoor air quality (IAQ) without sacrificing the energy costs of ventilation.  相似文献   

20.
Abstract Sources of indoor air pollutants in residential and office environments can be managed to reduce occupant exposures. Techniques for managing indoor air pollution sources include: source elimination, substitution, modification, pretreatment, and altering the amount, location, or time of use. Intelligent source management requires knowledge of the source's emission characteristics, including chemical composition, emission rates, and decay rates. In addition, knowledge of mechanical and natural outdoor air exchange rates, heating/air-conditioning duct flow rates, and local exhaust fan (e.g., kitchen, bathroom) flow rates is needed to determine pollutant concentrations. Finally, indoor air quality (IAQ) models use this information and occupant activity patterns to determine instantaneous and/or cumulative individual exposure. This paper describes a number of residential and office scenarios for various indoor air pollution sources, several ventilation conditions, and typical occupant activity patterns. IAQ model predictions of occupant exposures for these scenarios are given for selected source management options. A one-month period was used to compare exposures; thus, long-term exposure information is not presented in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号