首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 614 毫秒
1.
This study evaluates the effect of pH (4-7) on fermentative biohydrogen production by utilizing three isolated Clostridium species. Fermentative batch experiments show that the maximum hydrogen yield for Clostridium butyricum CGS2 (1.77 mmol/mmol glucose) is achieved at pH 6, whereas a high hydrogen production with Clostridium beijerinckii L9 (1.72 mmol/mmol glucose) and Clostridium tyrobutyricum FYa102 (1.83 mmol/mmol glucose) could be achieved under uncontrolled pH conditions (initial pH of 6.4-6.6 and final pH of 4-4.2). Low hydrogen yields (0-0.6 mmol/mmol glucose) observed at pH 4 are due likely to inhibitory effects on the microbial growth, although a low pH can be thermodynamically favorable for hydrogen production. The low hydrogen yields (0.12-0.64 mmol/mmol glucose) observed at pH 7 are attributed not only to thermodynamically unfavorable, but also metabolically unfavorable for hydrogen production. The relatively high levels of lactate, propionate, or formate observed at pH 7 reflect presumably the high enzymatic activities responsible for their production, together with the low hydrogenase activity, resulting in a low hydrogen production. A correlation analysis of the data from present and previous studies on biohydrogen production with pure Clostridium cultures and mixed microflora indicates a close relation between the hydrogen yield (YH2) and the (YH2)/(2(YHAc+YHBu)) ratio, with the observed correlation coefficient (0.787) higher than that (0.175) between YH2 and the molar ratio of butyrate to acetate (B/A). Based on the (YH2)/(2(YHAc+YHBu)) ratios observed at different pHs, a control of pH at 5.5-6.8 would seem to be an effective means to enhance the fermentative biohydrogen production.  相似文献   

2.
Dark fermentation is a promising biological method for hydrogen production because of its high production rate in the absence of light source and variety of the substrates. In this study, hydrogen production potential of four dark fermentative bacteria (Clostridium butyricum, Clostridium pasteurianum, Clostridium beijerinckii, and Enterobacter aerogenes) using glucose as substrate was investigated under anaerobic conditions. Batch experiments were conducted to study the effects of initial glucose concentration on hydrogen yield, hydrogen production rate and concentration of volatile fatty acids (VFA) in the effluents. Among the four different fermentative bacteria, C. butyricum showed great performance at 10 g/L of glucose with hydrogen production rate of 18.29 mL-H2/L-medium/hand specific hydrogen production rate of 3.90 mL-H2/g-biomass/h. In addition, it was found that the distribution of volatile fatty acids was different among the fermentative bacteria. C. butyricum and C. pasteurianum had higher ratio of acetate to butyrate compared to the other two species, which favored hydrogen generation.  相似文献   

3.
The effect of coculture of Clostridium butyricum and Escherichia coli on hydrogen production was investigated. C. butyricum and E. coli were grown separately and together as batch cultures. Gas production, growth, volatile fatty acid production and glucose degradation were monitored. Whilst C. butyricum alone produced 2.09 mol-H2/mol-glucose the coculture produced 1.65 mol-H2/mol-glucose. However, the coculture utilized glucose more efficiently in the batch culture, i.e., it was able to produce more H2 (5.85 mmol H2) in the same cultivation setting than C. butyricum (4.62 mmol H2), before the growth limiting pH was reached.  相似文献   

4.
Clostridium butyricum and Rhodopseudomonas faecalis RLD-53 were employed to produce hydrogen in mixed culture with glucose as sole substrate. Due to the great difference on growth rate and acid-resistant capacity between photo-fermentative bacteria and dark-fermentative bacteria, directly mixed culture of the two kinds of bacteria in different ratio was studied in this work. Hydrogen yield, volatile acids, pH and biomass in different periods were evaluated. Acetic acid and butyric acid produced by C. butyricum were dominant terminal fermentation products, and they were effective substrates for photo-fermentative bacteria. The cooperation was formed in a way like food chain. But compared to the production rate of volatile acids produced by C. butyricum, the utilization rate by photo-fermentative bacteria was far slower. The results demonstrated that the growth of photo-fermentative bacteria was limited when pH decreased sharply. The best ratio of C. butyricum to R. faecalis RLD-53 was 1:600. The maximum yield of hydrogen reached 122.4 ml-H2/vessel and hydrogen production rate was 0.5 ml-H2/ml-culture/day.  相似文献   

5.
A hydrogen producing strain newly isolated from anaerobic sludge in an anaerobic bioreactor, was identified as Clostridium beijerinckii Fanp3 by 16S rDNA gene sequence analysis and detection by BioMerieux Vitek. The strain could utilize various carbon and nitrogen sources to produce hydrogen, which indicates that it has the potential of converting renewable wastes into hydrogen. In batch cultivations, the optimal initial pH of the culture medium was between 6.47 and 6.98. Using 0.15 M phosphate as buffer could alleviate the medium acidification and improve the overall performance of C. beijerinckii Fanp3 in hydrogen production. Culture temperature of 35 °C was established to be the most favorable for maximum rate of hydrogen production. The distribution of soluble metabolic products (SMP) was also greatly affected by temperature. Considering glucose as a substrate, the activation energy (Ea) for hydrogen production was calculated as 81.01 kcal/mol and 21.4% of substrate energy was recovered in the form of hydrogen. The maximal hydrogen yield and the hydrogen production rate were obtained as 2.52 mol/mol-glucose and 39.0 ml/g-glucose h−1, respectively. These results indicate that C. beijerinckii Fanp3 is an ideal candidate for the fermentative hydrogen production.  相似文献   

6.
Chlamydomonas reinhardtii UTEX 90 accumulated 1.45 g dry cell weight and 0.77 g starch/L during photosynthetic growth using TAP media at 25 °C°C in presence of 2% CO2CO2 for 3 days. C. reinhardtii biomass was concentrated and then converted into hydrogen and organic acids by anaerobic fermentation with Clostridium butyricum. Organic acids in the fermentate of algal biomass were consecutively photo-dissimilated to hydrogen by Rhodobacter sphaeroides KD131. In the concentrated algal biomass 52% of the starch was hydrolyzed to 37.1 mmol H2H2/L-concentrated algal biomass and 13.6, 25.5, 7.4 and 493 mM of formate, acetate, propionate, and butyrate, respectively by C. butyricum. R. sphaeroides KD131 evolved 5.72 mmol H2H2 per ml-fermentate of algal biomass under illumination of 8 klux at 30 °C°C. Only 80% of the organic acids, mainly butyrate, were hydrolyzed during photo-incubation. During anaerobic conversion, 2.58 mol H2/molH2/mol starch–glucose was evolved using C. butyricum and then 5.72 mol H2/LH2/L-anaerobic fermentate was produced by R. sphaeroides KD131. Thus, the two-step conversion process produced 8.30 mol H2H2 from 1 mol starch–glucose equivalent algal biomass via organic acids.  相似文献   

7.
In this study, hydrogen gas was produced from starch feedstock via combination of enzymatic hydrolysis of starch and dark hydrogen fermentation. Starch hydrolysis was conducted using batch culture of Caldimonas taiwanensis On1 able to hydrolyze starch completely under the optimal condition of 55 °C and pH 7.5, giving a yield of 0.46–0.53 g reducing sugar/g starch. Five H2-producing pure strains and a mixed culture were used for hydrogen production from raw and hydrolyzed starch. All the cultures could produce H2 from hydrolyzed starch, whereas only two pure strains (i.e., Clostridium butyricum CGS2 and CGS5) and the mixed culture were able to ferment raw starch. Nevertheless, all the cultures displayed higher hydrogen production efficiencies while using the starch hydrolysate, leading to a maximum specific H2 production rate of 116 and 118 ml/g VSS/h, for Cl. butyricumCGS2 and Cl. pasteurianum CH5, respectively. Meanwhile, the H2 yield obtained from strain CGS2 and strain CH5 was 1.23 and 1.28 mol H2/mol glucose, respectively. The best starch-fermenting strain Cl. butyricum CGS2 was further used for continuous H2 production using hydrolyzed starch as the carbon source under different hydraulic retention time (HRT). When the HRT was gradually shortened from 12 to 2 h, the specific H2 production rate increased from 250 to 534 ml/g  VSS/h, whereas the H2 yield decreased from 2.03 to 1.50  mol H2/mol glucose. While operating at 2 h HRT, the volumetric H2 production rate reached a high level of 1.5 l/h/l.  相似文献   

8.
In this study, biohydrogen production from glucose by two fermentative bacteria (Clostridium butyricum, a typical strictly anaerobic bacterium, and Klebsiella pneumoniae, a well-studied facultative anaerobic and nitrogen-fixing bacterium) are stiochiometrically analyzed according to energy (ATP), reducing equivalent and mass balances. The theoretical analysis reveals that the maximum yield of hydrogen on glucose by Clostridium butyricum is 3.26 mol/mol when all acetyl-CoA entering into the acetate pathway (α=1α=1), which is higher than that by Klebsiella pneumoniae under strictly anaerobic conditions. In the latter case, the maximum yield by Klebsiella pneumoniae is 2.86 mol hydrogen per mol glucose when five sevenths of acetyl-CoA is transformed to acetate. However, under microaerobic condition the maximum yield of hydrogen on glucose by Klebsiella pneumoniae could reach 6.68 mol/mol if all acetyl-CoA entered into tricarboxylic acid (TCA) cycle (γ=1γ=1) and a quantity of 53% of the reducing equivalents generated in the metabolism were completely oxidized by molecular oxygen. On the other hand, the relationship between hydrogen production and biomass formation is distinct by Clostridium butyricum from that by Klebsiella pneumoniae.   The former yield of hydrogen on glucose increases as biomass. In contrast, the latter one decreases as biomass in a certain range of molar fraction of acetate in total acetyl-CoA metabolism (5/7?β?05/7?β?0). Microaerobic condition is favorable for high hydrogen production with low biomass formation by Klebsiella pneumoniae   in a certain range of the molar fraction of all reducing equivalents oxidized completely by molecular oxygen (0.53?δ?0.830.53?δ?0.83).  相似文献   

9.
The stable and optimized operation of photobioreactors (PBRs) is the most challenging task in photofermentative biological hydrogen production. The carbon to nitrogen ratio (C/N) in the feed is a critical parameter that significantly influences microbial growth and hydrogen production. In this study, the effects of changing the C/N ratio to achieve stable biomass and continuous hydrogen production using fed-batch cultures of Rhodobacter capsulatus YO3 (uptake hydrogenase deleted, hup-) were investigated. The experiments were carried out in 8 L panel PBRs operated in indoor conditions under continuous illumination and controlled temperature. Culture media containing different acetate (40-80 mM) and glutamate (2-4 mM) concentrations were used to study the effects of changing the C/N ratio on biomass growth and hydrogen production. Stable biomass concentration of 0.40 g dry cell weight per liter culture (gDCW/Lc) and maximum hydrogen productivity of 0.66 mmol hydrogen per liter culture per hour (mmol/Lc/h) were achieved during fed-batch operation with media containing 40 mM acetate and 4 mM glutamate, C/N = 25, for a period of over 20 days. A study on the effect of biomass recycling on biomass growth and hydrogen production showed that the feedback of cells into the photobioreactor improved biomass stability during the fed-batch operation but decreased hydrogen productivity.  相似文献   

10.
This study evaluated hydrogen production by co-culture of Ethanoligenens harbinense B49 and immobilized Rhodopseudomonas faecalis RLD-53 with different control strategies. To enhance cooperation of dark and photo-fermentation bacteria during hydrogen production process, the glucose concentration, phosphate buffer concentration and initial pH were controlled at 6 g/l, 50 mmol/l and 7.5, respectively. The maximum yield and rate of hydrogen production were 3.10 mol H2/mol glucose and 17.2 mmol H2/l/h, respectively. Ethanol from E. harbinense B49 in acetate medium can enhance hydrogen production by R. faecalis RLD-53 except the ratio of ethanol to acetate (RE/A) among 0.8 to 1.0. Control of the proper phosphate buffer concentration (50 mmol/l) not only increased acetic acid production by E. harbinense B49, but also maintained stable pH of co-culture system. Therefore, the results showed that co-culture of E. harbinense B49 and immobilized R. faecalis RLD-53 was a promising way of converting glucose into hydrogen.  相似文献   

11.
The hydrogen-producing bacteria SP4 and SP6 were isolated from the compost and identified by 16S rRNA gene sequencing as Clostridium butyricum and Clostridium beijerinckii, respectively. A comparative study on the biohydrogen-producing activity of the isolated strains was carried out using mono-, di- and tri-saccharides belonging to both hexoses (maltose, glucose, mannose, fructose, lactose, galactose, sucrose, raffinose, cellobiose) and pentoses (xylose). To assess the biotechnological significance, real wastewater rich in sugars (cheese whey, confectionery wastewater, sugar beet processing wastewater) was also used as a substrate. C. butyricum SP4 fermented sugars with a yield of 0.93–1.52 mol H2/mol hexose (pentose); the maximum yield was obtained from fructose, the minimum – from raffinose and cellobiose. The most preferred substrate for C. beijerinckii SP6 was sucrose with a yield of 1.76 mol H2/mol hexose, while cellobiose yielded only 0.64 mol H2/mol hexose. Overall, the efficiency of converting wastewater to H2 by C. butyricum SP4 was also slightly lower (66–93 ml H2/g chemical oxygen demand (COD)) than that of C. beijerinckii SP6 (76–103 ml H2/g COD). Even though the main soluble metabolite products (SMPs) for both isolates were acetate and butyrate, C. butyricum SP4 also produced a significant amount of ethanol (up to 21.5% of SMPs) and formate (up to 32.5% of SMPs), and C. beijerinckii SP6 – lactate (up to 25% of SMPs). A distinctive feature of C. beijerinckii SP6 was a significantly lower (almost 2 times) yield of SMPs, while C. butyricum SP4 had a higher rate of H2 production according to the results obtained from the kinetic study using the modified Gompertz equation and the first order equation. Analysis of Spearman's rank correlation coefficients revealed a statistically significant relationship between the kinetic parameters of H2 production and the concentration of butyrate and the final pH of the medium for C. butyricum SP4, and with the concentration of ethanol for C. beijerinckii SP6. These findings provide valuable information on the metabolic capabilities of the most studied hydrogen-producing representatives of the Clostridium genus for their use in optimizing the technology for biohydrogen production by dark fermentation of various organic wastes.  相似文献   

12.
Dark fermentative bacterial strains were isolated from riverbed sediments and investigated for hydrogen production. A series of batch experiments were conducted to study the effect of pH, substrate concentration and temperature on hydrogen production from a selected bacterial consortium, TERI BH05. Batch experiments for fermentative conversion of sucrose, starch, glucose, fructose, and xylose indicated that TERI BH05 effectively utilized all the five sugars to produce fermentative hydrogen. Glucose was the most preferred carbon source indicating highest hydrogen yields of 22.3 mmol/L. Acetic and butyric acid were the major soluble metabolites detected. Investigation on optimization of pH, temperature, and substrate concentration revealed that TERI BH05 produced maximum hydrogen at 37 °C, pH 6 with 8 g/L of glucose supplementation and maximum yield of hydrogen production observed was 2.0–2.3 mol H2/mol glucose. Characterization of TERI BH05 revealed the presence of two different bacterial strains showing maximum homology to Clostridium butyricum and Clostridium bifermentans.  相似文献   

13.
Fermentative hydrogen production was carried out using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). This work investigates the effects of initial substrate concentration, initial medium pH, and temperature. The hydrogen yield was about 3.1 mol (mol glucose)−1 when starting with an initial glucose concentration of 10 gl−1 and initial a pH of 6.0 ± 0.2 at a temperature of 37 °C. The volume of hydrogen produced decreased when higher initial glucose concentrations were applied. The most suitable conditions for hydrogen production in a batch reactor were observed at initial pH 6.0 ± 0.2 and 37 °C.  相似文献   

14.
Feedback inhibition is one of the main challenges of fermentative hydrogen production. In this study, the effects of butyrate and acetate on hydrogen production of Clostridium tyrobutyricum were investigated. Substrate consumption and hydrogen production were accelerated when acetate ≤15 g/L was fed. Exogenous acetate induced acetate assimilation and increased the metabolic flux of butyrate synthesis. Exogenous butyrate significantly decreased biomass formation, and slowed substrate consumption and hydrogen production. Metabolic and gene expression analyses showed that butyrate impaired glycolysis and acetate production pathway. The increased butyrate/acetate molar ratio was deemed as a strategy for cells to alleviate pH decrease and reduce the inhibition of undissociated butyric acid. Inhibition model analyses indicated butyrate was the main inhibitor in butyrate-type hydrogen production. This study demonstrates the different feedback effects of acetate and butyrate on hydrogen production of C. tyrobutyricum and provides strategies to relieve the feedback inhibition for efficient hydrogen production.  相似文献   

15.
A new isolated photosynthetic bacterium, Rubrivivax gelatinosus M002, can produce hydrogen with glucose or lactate as sole carbon source, and grow on butyrate and acetate without hydrogen evolution. Experiments on studying its hydrogen production performance from glucose mixed with acetate, butyrate or lactate were carried out. The results showed that the hydrogen yield increased significantly and the pH value of the photo-fermentations could retain around 7 in these mixed carbon sources cultures. A hydrogen yield of 9.9 mol H2/mol-glucose was observed when 20 mM acetate and 15 mM glucose was co-fed as substrate. The maximum hydrogen production rate was 44 mL/(L·h), which was 37.5% higher than the highest rate obtained with glucose as sole carbon source. The results suggest an alternative way for high-yield hydrogen production with mixed carbon source in one-step process instead of two-step fermentation process.  相似文献   

16.
There has been a great interest in fermentative hydrogen production during recent decades. However, the low H2 yield associated with fermentative hydrogen production process continues to hinder its industrial application. It is delectable that a maximum 3.9 mol H2 per mol glucose was obtained in fed-batch fermentation mode with a butyric acid over-producing Clostridium tyrobutyricum mutant, which to our knowledge is the highest H2 yield ever got in the fermentation process with Clostridium sp. This study aimed to better understand the change of flux profile within the whole metabolic network and to conduct the metabolic flux analysis of fermentative hydrogen production. For the first time, we constructed a metabolic flux model for the anaerobic glucose metabolism of C. tyrobutyricum ATCC 25755, and revealed the internal mechanism responsible for the redistribution of the carbon flux in the mutant strain in comparison with the wide-type. The MFA methodology was used to study the fractional flux response to variations in operational pH, and revealed that pH was a significant operational parameter effecting on the fermentative hydrogen production process. Furthermore, the presence of NADH-ferredoxin oxidoreductase activity in this anaerobe was demonstrated. By measuring the activities of related enzymes in the biosynthesis pathway of hydrogen, we thus concluded that the increased specific activities of both NFOR and hydrogen-catalyzing enzyme (hydrogenase) would be attributed to the hydrogen over-producing.  相似文献   

17.
Alternative fuel sources have been extensively studied. Hydrogen gas has gained attention because its combustion releases only water, and it can be produced by microorganisms using organic acids as substrates. The aim of this study was to enrich a microbial consortium of photosynthetic purple non-sulfur bacteria from an Upflow Anaerobic Sludge Blanket reactor (UASB) using malate as carbon source. After the enrichment phase, other carbon sources were tested, such as acetate (30 mmol l−1), butyrate (17 mmol l−1), citrate (11 mmol l−1), lactate (23 mmol l−1) and malate (14.5 mmol l−1). The reactors were incubated at 30 °C under constant illumination by 3 fluorescent lamps (81 μmol m−2 s−1). The cumulative hydrogen production was 7.8, 9.0, 7.9, 5.6 and 13.9 mmol H2 l−1 culture for acetate, butyrate, citrate, lactate and malate, respectively. The maximum hydrogen yield was 0.6, 1.4, 0.7, 0.5 and 0.9 mmol H2 mmol−1 substrate for acetate, butyrate, citrate, lactate and malate, respectively. The consumption of substrates was 43% for acetate, 37% for butyrate, 100% for citrate, 49% for lactate and 100% for malate. Approximately 26% of the clones obtained from the Phototrophic Hydrogen-Producing Bacterial Consortium (PHPBC) were similar to Rhodobacter, Rhodospirillum and Rhodopseudomonas, which have been widely cited in studies of photobiological hydrogen production. Clones similar to the genus Sulfurospirillum (29% of the total) were also found in the microbial consortium.  相似文献   

18.
This paper reports investigations carried out to determine the optimum culture conditions for the production of hydrogen with a recently isolated strain Clostridium butyricum CWBI1009. The production rates and yields were investigated at 30 °C in a 2.3 L bioreactor operated in batch and sequenced-batch mode using glucose and starch as substrates. In order to study the precise effect of a stable pH on hydrogen production, and the metabolite pathway involved, cultures were conducted with pH controlled at different levels ranging from 4.7 to 7.3 (maximum range of 0.15 pH unit around the pH level). For glucose the maximum yield (1.7 mol H2 mol−1 glucose) was measured when the pH was maintained at 5.2. The acetate and butyrate yields were 0.35 mol acetate mol−1 glucose and 0.6 mol butyrate mol−1 glucose. For starch a maximum yield of 2.0 mol H2 mol−1 hexose, and a maximum production rate of 15 mol H2 mol−1 hexose h−1 were obtained at pH 5.6 when the acetate and butyrate yields were 0.47 mol acetate mol−1 hexose and 0.67 mol butyrate mol−1 hexose.  相似文献   

19.
Fermentative hydrogen production is considered a reasonable alternative for generating H2 as an energy carrier for electricity production using hydrogen fuel cells. The kinetics of hydrogen production from glucose, xylose and cellobiose were investigated using pure culture Clostridium beijerinckii NCIMB 8052. Adding anthrahydroquinone-2,6-disulfonate (AH2QDS) at concentrations ranging from 100 μM to 500 μM increased the hydrogen production rates from 0.80 to 1.35 mmol/L-hr to 1.20–2.70 mmol/L-hr with glucose, xylose, or cellobiose as the primary substrates. AH2QDS amendment also increased the substrate utilization rate and biomass growth rate by at least two times. These findings suggest that adding hydroquinone reducing equivalents influence cellular metabolism with hydrogen production rate, substrate utilization rate, and growth rate being simultaneously affected. Resting cell suspensions were conducted to investigate the influence of AH2QDS on the hydrogen production rate from glyceraldehyde 3-phosphate, which is a shared intermediate in both glycolysis and pentose phosphate pathway. Data demonstrated that hydrogen production rate increased by 1.5 times when glyceraldehyde 3-phosphate was the sole carbon source, suggesting that the hydroquinone may alter reactions starting with or after glyceraldehyde 3-phosphate in central metabolism. These data demonstrate that adding hydroquinones increased overall metabolic activity of C. beijerinckii. This will eventually increase the efficiency of industrial scale production once appropriate hydroquinone equivalents are identified that work well in large-scale operations, since fermentation rate is one of the two critical factors (production rate and yield) influencing efficiency and cost.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号