首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an experimental modeling of contaminant dispersion in a mock-up isolation room with different negative pressure differentials and ventilation rates. A hypothetical contaminant (sulfur hexafluoride, SF6) is emitted from a patient lying on a bed in the mock-up isolation room. The impacts of ventilation rates 12 and 24 h−1 and pressure differentials −2.5, −5.0, −8.0, and −15.0 Pa on the ventilation effectiveness in the room are evaluated quantitatively. A local air quality index and an exposure index for healthcare workers are introduced in the research to evaluate the ventilation efficiency of the isolation room. Based on the results of our experiment, the ventilation efficiency of the isolation room ranks the highest at −15.0 Pa/24 h−1, followed, respectively, by −15.0 Pa/12 h−1, −8.0 Pa/24 h−1, −5.0 Pa/24 h−1, −2.5 Pa/24 h−1, −8.0 Pa/12 h−1, −5.0 Pa/12 h−1, and −2.5 Pa/12 h−1.  相似文献   

2.
The presence, flow, and distribution of particle in heating, ventilation, and air-conditioning (HVAC) ducts influence the quality of air in buildings and hence the health of building occupants. To shed a better light on the flow of particles in HVAC ducts this a paper has considered the effects of drag, lift force, gravity, Brownian diffusion, and turbulent diffusion on the dimensionless deposition velocity of particles in smooth vertical ventilation ducts using fully developed and developing velocity profiles. Based on the Reynolds stress transport model (RSM) at two different air velocities, 3.0 m/s and 7.0 m/s, the aforementioned effects were predicted using Reynolds-averaged Navier–Stokes (RANS)–Lagrangian simulation on square shaped ducts under vertical flows.  相似文献   

3.
Atmospheric concentrations and gas-particle partition coefficients were determined for polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of Zonguldak, Turkey between May 2007 and April 2008. Total concentrations of PAHs ranged from 0.52 ng m− 3 to 636 ng m− 3 in the particle phase and from 5.60 ng m− 3 to 725 ng m− 3 in the gas phase. The annual mean concentrations of PAHs in the particle and gas phase were found to be 114 ng m− 3 and 184 ng m− 3, respectively. Significant seasonal variations of particle and gas phase PAH concentrations were observed with higher levels during cold period. The distribution of PAHs between the particle and gas phase was investigated and it was found that three ring PAHs were associated primarily with the gas phase, four ring PAHs were distributed almost equally between the two phases and five and six ring PAHs were mainly associated with the particle phase. Gas-particle partition coefficients (Kp) of PAHs have been calculated and correlated with their subcooled liquid vapor pressures (PLº). The slopes (mr) varied from − 0.63 to − 0.23 were far from the theoretical value (−1) due to the short distance between the sampling point and the emission sources. The relationships between temperature and gas phase partial pressures of PAHs were examined using the Clausius-Clapeyron equation and the obtained positive slopes indicated that PAH concentrations increased with decreasing air temperature as a result of high dominance of local emissions.  相似文献   

4.
The main objective of this study is to investigate the transport mechanisms of size-dependent airborne particulate matters in partitioned indoor environment. A three-dimensional Lagrangian particle tracking model is developed herein and validated by reliable experimental measurement. Four major particle-driving mechanisms (the gravitational force, the drag force, the Brownian motion force and the Saffman lift force) are considered in the model. Five kinds of particle transport mechanism scenarios are performed, including the dynamic equation scenario (all considered), the Brownian-motion-neglected scenario, the drag-force-neglected scenario, the lift-force-neglected scenario, and the inertial-force-neglected scenario (neglecting both the drag force and lift force). Seven different particle aerodynamic diameters (10, 5, 2.5, 1, 0.5, 0.1 and 0.05 μm), ranging from coarse to ultra-fine particle ranges, are used to investigate the relationship between particle size and each transport mechanism scenario. The results show that the influence of the drag force and the inertial force is significant for particle diameter larger than 1 μm, and the Brownian motion force is important for particle diameter smaller than 0.5 μm. The Saffman lift force cannot be neglected in a specific range of particle sizes between 2.5 and 5 μm.  相似文献   

5.
Tire-wear is an important source of PAHs, elemental carbon (EC) and organic carbon (OC). The emissions of these pollutants have been studied in an experimental set-up, simulating a realistic road-tire interaction (summer tire-concrete road). The large particle non-exhaust emissions (LPNE; diameter greater than 10 μm) have been evaluated over 14,500 km run of the tire. An increasing linear trend with cumulative km run was observed for emissions of PAHs and carbon. Amongst PAHs in LPNE, pyrene has been observed to be the highest (30 ± 4 mg kg− 1) followed by benzo[ghi]perylene (17 ± 2 mg kg− 1). Different fractions of EC-OC for tire-wear have been analyzed, and unlike exhaust emissions, EC1 was observed to be 99% of EC whereas more than 70% of the OC was the high temperature carbon (OC3 and OC4). The overall emission factors (mass tire− 1 km− 1) for PAHs, EC and OC from tire-wear are 378 ng tire− 1 km− 1, 1.46 mg tire− 1 km− 1 and 2.37 mg tire− 1 km− 1 for small cars.  相似文献   

6.
The goal of this research was to examine the characteristics of the spatial velocity and concentration profiles which might result in health care workers’ exposure to a pathogenic agent in an airborne infection isolation room (AIIR). Computational fluid dynamics simulations were performed for this purpose. This investigation expanded on the work of Huang and Tsao [The influence of air motion on bacteria removal in negative pressure isolation rooms. HVAC & R Research 2005; 11: 563–85], who studied how ventilation conditions impact dispersion of pathogenic nuclei in an AIIR by investigating the airflow conditions impacting dispersion of infectious agents in the AIIR. The work included a careful quality assurance study of the computed airflow, and final simulations were performed on a fine tetrahedral mesh with approximately 1.3×106 cells. The 1 μm diameter particles were released from a 0.001225 m2 area representing the nose and mouth. Two cases were investigated during the current study: continuous exhalation of pathogen-laden air from the patient and expulsion of pathogenic particles by a single cough or sneeze. Slow decay of particle concentration in the AIIR during the single cough/sneeze simulation and tendency for particle accumulation near the AIIR walls observed in the continuous breathing simulation suggest that unintended exposures are possible despite the ventilation system. Based on these findings, it is recommended that extra care be taken to assure proper functionality of personal protective equipment used in an AIIR.  相似文献   

7.
Several case clusters occurred in high-rise residential buildings in Hong Kong in the 2003 SARS (the severe acute respiratory syndrome) epidemic, which motivated a series of engineering investigations into the possible airborne transport routes. It is suspected that, driven by buoyancy force, the polluted air that exits the window of the lower floor may re-enter the immediate upper floor through the window on the same side. This cascade effect has been quantified and reported in a previous paper, and it is found that, by tracer gas concentration analysis, the room in the adjacent upstairs may contain up to 7% of the air directly from the downstairs room. In this study, after validation against the experimental data from literatures, Eulerian and Lagrangian approaches are both adopted to numerically investigate the dispersion of expiratory aerosols between two vertically adjacent flats. It is found that the particle concentration in the upper floor is two to three orders of magnitude lower than in the source floor. 1.0 μm particles disperse like gaseous pollutants. For coarse particles larger than 20.0 μm, strong deposition on solid surfaces and gravitational settling effect greatly limit their upward transport.  相似文献   

8.
We present a daylighting simulation tool, designed to predict the distribution of daylight in an office room using a rapid calculation procedure. Results from this simulation are compared to the output from a professional rendering program, and are found to agree within 10% normalized error. A method for finding average light levels in an office room is described, and these calculations are used to infer a minimum required energy cost to supplement daylighting with artificial lighting. Finally, we present programming strategies that have been used to reduce computation times from 15 min to 3–5 s.  相似文献   

9.
In the present communication, fifteen different glazing systems ranging from 3 mm single glazed clear glass to double glazed with low-e and solar control coating, have been analysed in terms of their human thermal comfort impact. Thermal comfort is measured in term of PMV (predicted mean vote) and PPD (predicted percentage of dissatisfied). Study encompasses all the six climatic zones of India. By using OPTICS 5.0 and WINDOW 5.0, U-values, solar heat gain coefficient, inside glazing surface temperatures and inside solar radiation have been computed. Depending upon different climatic zones, six sets of different design conditions, in terms of ambient temperatures, solar radiation and wind velocity, have been chosen. Typical values of metabolic rate and clothing insulation taken are 1.2 met and 0.5 clo for summer and 1.0 met and 1.0 clo for winter, respectively. Inside room air velocity is taken as 0.15 m s−1 round the year. Room temperature is taken as 20 °C in winter and 25 °C in summer. It is found that for cold station (e.g. Leh) all glazings except solar control glazings, ensure thermal comfort and total PPD is less than 10% (|PMV|?0.5). For warm and hot climates, solar control glazings are thermally suitable. Results for winter night of Delhi shows that all the 15 glazings are inadequate for thermal comfort and PPD, due to cold feeling, varies between 27% and 33% approximately.  相似文献   

10.
The application of three turbulence models—standard kε, re-normalization group (RNG) kε and RNG-based large eddy simulation (LES) model—to simulate indoor contaminant particle dispersion and concentration distribution in a model room has been investigated. The measured air phase velocity data obtained by Posner et al. [Energy and Buildings 2003;35:515–26], are used to validate the simulation results. All the three turbulence model predictions have shown to be in good agreement with the experimental data. The RNG-based LES model has shown to yield the best agreement. The flow of contaminant particles (with diameters of 1 and 10 μm) is simulated within the indoor airflow environment of the model room. Comparing the three turbulence models for particle flow predictions, the RNG-based LES model through better accommodating unsteady low-Reynolds-number (LRN) turbulent flow structure has shown to provide more realistic particle dispersion and concentration distribution than the other two conventional turbulence models. As the experimental approach to access indoor contaminant particle concentration can be rather expensive and unable to provide the required detailed information, the LES prediction can be effectively employed to validate the widely used kε models that are commonly applied in many building simulation investigations.  相似文献   

11.
The photocatalytic ozonation of sulfamethoxazole (SMT) has been studied in water under different experimental conditions. The effect of gas flow rate, initial concentration of ozone, SMT and TiO2 has been investigated to establish the importance of mass transfer and chemical reaction. Under the conditions investigated the process is chemically controlled. Both, SMT and TOC kinetics have been considered. Fast and slow kinetic regime of ozone reactions have been observed for SMT and TOC oxidation, respectively. Application of different inhibitors allows for the establishment of reaction mechanism involving direct ozonation, direct photolysis, hydroxyl radical reactions and photocatalytic reactions. Rate constants of the direct reaction between ozone and protonated, non-protonated and anionic SMT species have been determined to be 1.71 × 105, 3.24 × 105 and 4.18 × 105 M−1 s−1, respectively. SMT quantum yield at 313 nm was found to be 0.012 moles per Einstein at pH 5 and 0.003 moles per Einstein at pHs 7 and 9. Main contributions to SMT removal were direct ozone reaction, positive hole oxidation and hydroxyl radical reactions. For TOC removal, main contributions were due to positive hole oxidation and hydroxyl radical reactions.  相似文献   

12.
This study has focused on the evaluation of the optimal temperature in each cabin of the Korean maritime patrol vessels. We aptly modified the inland indoor items and criteria of clothing and activities, and then investigated the human factors in the cabins of Korean maritime patrol vessels. The total thermal resistance of clothing in the wheelhouse was 0.097, 0.079, 0.096, and 0.130 m2 °C/W and that for the accommodation areas was 0.067, 0.059, 0.084, and 0.101 m2 °C/W in spring, summer, fall, and winter, respectively. The metabolic rate was 228.04 W/m2 in the training room and above 100 W/m2 in the engine room and auxiliary machine room. In the wheelhouse and accommodation, the metabolic rate was 78.14 and 44.45 W/m2, respectively. Based on human factors, the optimum temperature was 23 °C in the wheelhouse and 29 °C in the accommodation. Therefore, 6 °C of energy can be saved in case of PMV/PPD-based air conditioning.  相似文献   

13.
The interaction between different ventilation strategies, and the adsorption and desorption of volatile organic compounds on material surfaces in small test chambers, is investigated. In test chamber experiments, nylon carpet was exposed to a mixture of toluene and α-pinene at two different dosing rates. The ventilation strategies were chosen to mimic the conditions in real buildings, i.e. with an air exchange rate of 2 h−1 during the working day (8–17) and a rate of 0.67 h−1 during the remainder of the 24 h. The results show that the sorption behavior has to be included when estimating the concentration variations in a room based on source characteristics and ventilation rates. The software application “EnviSim” was used to model the concentrations in a model room based on the experimental conditions. As the ventilation strategy influences the resulting concentrations, it is recommended that the ventilation system be “turned on” a couple of hours before the start of the working day and “turned down” again soon after the occupants have left the building.  相似文献   

14.
Rainwater has been used in many countries as a way of minimising water availability problems. In Brazil, it has been reported that the potential for potable water savings by using rainwater may range from 48% to 100% depending on the geographic region. In southeastern Brazil, water availability is about 4500 m3 per capita per year, but it is predicted to be lower than 1000 m3 per capita per year from about 2100 onwards. The main objective of this article is to evaluate the potential for potable water savings by using rainwater in 195 cities located in southeastern Brazil. Rainwater tank sizes are also assessed for some cities in order to evaluate the ideal tank capacity as a function of potable water demand and rainwater demand. Results indicate that average potential for potable water savings range from 12% to 79% per year for the cities analysed. Ideal rainwater tank capacities for dwellings with low potable water demand range from about 2000 to 20,000 litres depending on rainwater demand. For dwellings with high potable water demand, ideal rainwater tank capacities range from about 3000 to 7000 litres. The main conclusion drawn from the research is that the average potential for potable water savings in southeastern Brazil is 41%. It was also concluded that rainwater tank capacity has to be determined for each location and dwelling as it depends strongly on potable water demand and rainwater demand.  相似文献   

15.
Tailings samples from the Goldenville and Montague abandoned gold mines in Nova Scotia, Canada were subjected to bioaccessibility tests to examine the effects of the choice of particle size fraction on the bioaccessibility of arsenic. The proportion of finer grains (< 150 μm) in this sample set varied from 6.0 to 66 wt.%. Samples were sieved to < 250, < 150, and < 45 μm particle size fractions. The arsenic bioaccessibility ranged from less than 1.0 to 48%, but no systematic variation was observed (p > 0.13) precluding the association of greater percent arsenic bioaccessibility with a specific particle size fraction, method or site. On the other hand, the highest bioaccessible arsenic concentrations (up to 5200 mg kg− 1) were consistently observed in samples sieved to the < 45 μm particle size, for both the physiologically based extraction test and a glycine-buffered bioaccessibility method (in 89 and 87% of samples tested, respectively). This was due to higher total arsenic concentrations in the same particle size fraction. Grain maps obtained by X-ray absorption spectroscopy indicate that samples with the highest percent arsenic bioaccessibility contain amorphous pentavalent arsenic distributed throughout the sample as well as grains coated with pentavalent arsenic. Arsenic bioaccessibilities lower than 10% were found in samples with encapsulated arsenopyrite and some grains composed primarily of pentavalent arsenic. The < 45 μm particle size fraction appears to yield conservative (protective) estimates of the bioaccessible dose of arsenic, but wide variations exist in particle size distribution and arsenic bioaccessibility between samples. As well, sieving to < 45 μm may exclude potentially relevant particles by restricting the study to an average particle size that is smaller than the average size of particles found on human hands, and may unduly influence the resulting bioaccessibility measurements.  相似文献   

16.
A room using carbon black mortar slabs (CBMS) as the electrical floor heating element has been built in our lab. Studies showed that an electrical power of about 123.8 W/m2 resulted in the indoor temperature rise of 10 °C within 330 min. Temperature distribution along the height of the room was uniform. Temperature rise was slightly higher if floor tiles rather than the wood flooring was used. In the process of heating, self-heating of CBMS has consumed more than 30% of the generated heat by Joule effect, which was advantageous for the stability of the thermal state. The indoor air absorbed over 50% of the generated heat. Results derived from repeated tests show that the electrical power of the CBMS system was stable during several cycles of heating. Further, the procedure and power consumption for the system to maintain a certain indoor temperature were studied. Continuous tests for 72 h has shown that the higher the indoor controlled temperature was, the longer the working time and the shorter the rest time in every cycle of heating were required. Accordingly, the power consumption to maintain the heat state increased with the controlled temperature increasing.  相似文献   

17.
Monitoring of aerosols is typically performed over 3 h to diurnal time scales for outdoor concentration levels and 15 min to 8 h scales indoors. At these scales, concentration is assumed to be well mixed with little spatio-temporal variability around the sampler. Less attention has been given to the potential for acute exposure to contaminants during the initial minutes after a point-source release, where point-wise concentrations may greatly exceed the well-mixed conditions. Here, we seek to demonstrate that the commonly used well-mixed assumption is flawed in the first minutes after a contaminant is released because point-wise concentration levels are initially highly non-uniform and are influenced by turbulent structures caused by the presence of obstacles in the room. This assumption was examined by releasing 3 μm aerosols in a test room with HEPA filter ventilation and by varying controlled conditions of room furnishings (furnished vs. unfurnished) and contaminant release locations (at the inlet vent or under a desk). For each experiment, aerosol concentrations were measured simultaneously at seven locations by nephelometry. Complementary computational fluid dynamics simulations were performed to lend confidence to the experiments and to provide detailed pictures of the velocity and particle concentration profiles. The experimental and numerical results corroborated the hypothesis. For both release locations in the furnished room, a completely well-mixed condition did not occur 600 s after the release, and aerosol dispersion was dictated by the turbulent airflow pattern. For the empty room, there was significantly less spatial variability in the point-wise measured concentrations after 300 s than for the furnished room. This information may aid in evaluating the potential for occupant exposure to aerosolized hazardous substances and in supporting optimization of detector placement.  相似文献   

18.
Wan TJ  Shen SM  Siao SH  Huang CF  Cheng CY 《Water research》2011,45(19):6301-6307
Backside grinding (BG) wastewater treatment typically requires large quantities of chemicals, i.e. polyaluminum chloride (PAC) coagulant and produces considerable amounts of sludge, increasing the loading and cost of subsequent sludge treatment and disposal processes. This study investigated the effects of the addition of magnetic seeds (FeO*Fe2O3) of selected particle sizes and of optimized combinations of magnetic seeds and PAC on the aggregation of silica nanoparticles from BG wastewater and on the sedimentation time at various pH values (5-9). The results show that the turbidity of BG wastewater was significantly reduced by the magnetic aggregation treatment. The dosage of PAC combined with 2.49 g L−1 or 1.24 g L−1 of magnetic seeds was reduced by 83% (from 60 to 10 mg L−1) compared to the conventional process of using only PAC as a coagulant. The turbidity of the BG wastewater, initially 1900-2500 NTU, could also be successfully decreased about to 23 NTU by the addition of 3.74 g L−1 magnetite (FeO*Fe2O3) only at pH 5 with an applied magnetic field of 1000 G. Different coagulation conditions using magnetic seeds combined with coagulant resulted in different aggregation performances. The treatment performance was more effective by using two-stage dosing, in which magnetic seeds and PAC were added separately, than that with one-stage dosing, where the magnetic seeds and PAC were added simultaneously during rapid mixing. The two-stage dosing allowed for a reduction in the optimum dosage of magnetic seeds from 3.74 g L−1 to 2.49 g L−1 or 1.24 g L−1 without affecting performance when coupled with 0.01 g L−1 of PAC coagulant. The developed method effectively reduced the production of waste sludge.  相似文献   

19.
Assessment of indoor air quality in typical classrooms is vital to students’ health and their performance. The present study was designed to monitor indoor and outdoor size-resolved particle concentrations in a naturally ventilated classroom and investigate factors influencing their levels and relationships. The experiments were performed, at normal ventilation condition with doors and windows opened, on the top floor of a public school building near a busy commercial area of Chiang Mai, Thailand. The particle number concentrations were measured using an optical counter with four size intervals between 0.3 and 5.0 μm. The dataset was collected during weekdays and weekends with a 24 h sampling period over November and December 2005. It was observed that the median indoor particle number concentrations during daytime for 0.3–0.5, 0.5–1.0, 1.0–2.5, and 2.5–5.0 μm size intervals were about 1.6×108, 1.7×107, 1.2×106, and 4.1×105 particles/m3, respectively. It was also found that concentrations at weekends were slightly higher those measured on weekdays, and at night, appeared to be higher than daytime. Indoor particles were observed to exhibit similar temporal variation pattern with outdoor particles. Results suggested that a significant contribution to indoor particles was from penetration of outdoor particles, whereas indoor sources generated from occupant activity did not show strong evidence. High outdoor particle loading and high air exchange rate were thought to be predominant causes. Ratios of indoor-to-outdoor (I/O) particle concentrations varied in a relatively narrow range from 0.69 to 0.88 with average values well below 1. The I/O ratios were in the range from 0.74 to 0.88 for submicrometer particles and from 0.69 to 0.80 for supermicrometer particles.  相似文献   

20.
Research regarding the magnitude of ultrafine particle levels at highway toll stations is limited. This study measured ambient concentrations of ultrafine particles at a highway toll station from October 30 to November 1 and November 5 to November 6, 2008. A scanning mobility particle sizer was used to measure ultrafine particle concentrations at a ticket/cash tollbooth. Levels of hourly average ultrafine particles at the tollbooth were about 3-6 times higher than those in urban backgrounds, indicating that a considerable amount of ultrafine particles are exhausted from passing vehicles. A bi-modal size distribution pattern with a dominant mode at about < 6 nm and a minor mode at about 40 nm was observed at the tollbooth. The high amounts of nanoparticles in this study can be attributed to gas-to-particle reactions in fresh fumes emitted directly from vehicles. The influences of traffic volume, wind speed, and relative humidity on ultrafine particle concentrations were also determined. High ambient concentrations of ultrafine particles existed under low wind speed, low relative humidity, and high traffic volume. Although different factors account for high ambient concentrations of ultrafine particles at the tollbooth, measurements indicate that toll collectors who work close to traffic emission sources have a high exposure risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号