首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermodynamics equilibrium analysis of carbon dioxide reforming of methane combined with steam reforming to synthesis gas was studied by Gibbs free energy minimization method to understand the effects of process variables such as temperature, pressure and inlet CH4/H2O/CO2 ratios on product distributions. For this purpose, the calculations were carried out at total pressures of 1 and 20 bar, and at ranges of temperature and steam-to-carbon ratios of 200–1200 °C and 0–0.50, respectively. The results revealed that carbon dioxide reforming of methane combined with steam reforming process was controlled by different reactions with regard to the operating temperature, pressure and varying feed compositions. The H2/CO product ratio could be modified by changing the relative concentration of steam and CO2 in the feed, temperature and pressure, depending on the downstream application.  相似文献   

2.
CO2 reforming with simultaneous steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal oxide catalyst (prereduced by H2) at different process conditions has been investigated. In the simultaneous CO2 and steam reforming, the conversion of methane and H2O and also the H2/CO product ratio are strongly influenced by the CO2/H2O feed-ratio. In the simultaneous CO2 reforming and partial oxidation of methane, the conversion of methane and CO2, H2 selectivity and the net heat of reaction are strongly influenced by the process parameters (viz. temperature, space velocity and relative concentration of O2 in the feed). In both cases, no carbon deposition on the catalyst was observed. The reduced NdCoO3 perovskite-type mixed-oxide catalyst (Co dispersed on Nd2O3) is a highly promising catalyst for carbon-free CO2 reforming combined with steam reforming or partial oxidation of methane to syngas.  相似文献   

3.
Perovskite-type oxide catalysts LaNiO3 and La1−xCexNiO3 (x ≤ 0.5) were prepared by the Pechini method and used as catalysts for carbon dioxide reforming of methane to form synthesis gas (H2 + CO). The gaseous reactants consisted of CO2 and CH4 in a molar ratio of 1:1. At a GHSV of 10,000 hr−1, CH4 conversion over LaNiO3 catalyst increased from 66% at 600 °C to 94% at 800 °C, while CO2 conversion increased from 51% to 92%. The achieved selectivities of CO and H2 were 33% and 57%, respectively, at 600 °C. To prevent the deposition of carbon and the sintering nickel species, some of the Ni in perovskite-type oxide catalyst was substituted by Ce. Ce provided lattice oxygen vacancies, which activated C–H bonds, and increased the selectivity of H2 to 61% at 600 °C. XRD analysis indicates that the catalyst exhibited a typical perovskite spinel structure and formed La2O2CO3 phases after CO2 reforming. The FE-SEM results reveal carbon whisker of the LaNiO3 catalyst and the BET analysis indicates that the specific surface area increases after the reforming reaction. The H2-TPR results confirm that Ce metals can store and provide oxygen.  相似文献   

4.
Silicon nitride supported nickel catalyst prepared by impregnation using nickel nitrate solution was employed for the carbon dioxide reforming of methane. The catalyst was tested at 800 °C under atmospheric pressure. The influences of Ni loading and calcination temperature on the catalytic performance were investigated. It was found that the nickel loading and calcination temperature strongly influenced the catalytic performance. Over the 7 wt. % Ni/Si3N4 catalyst calcined at 400 °C, the conversions of CH4 and CO2 can achieve 95% and 91%, respectively. Appropriate interaction between the metal and the basic support makes the catalyst more resistant to sintering and coking, and thus an excellent stability.  相似文献   

5.
A knetic study of CH4 partial oxidation was performed using Chemkin Ⅱ simulation package with the GRI,NIST,Alexander and Leeds CH4 oxidation mechanisms,Comparing kinetic simulation results with thermodynamic analysis indicates that GRI_1.2-3.0,NIST and Alexander_0.1-0.3 mechanisms give a reasonable performance in describing CH4 partial oxidation while Alexander_0.4 and the Leeds mechanisms fail to do so.Two distinct reaction zones are observed in the simulation results.which is different from the two-stage concept reported in the literature .Major global reactions within each reaction zone are identified.  相似文献   

6.
A self-sustained electrochemical promotion (SSEP) catalyst is synthesized for partial oxidation reforming (POXR) of CH4 to produce syngas (H2 and CO) at a relatively low temperature ranging from 350 to 650 °C. The SSEP catalyst is comprised of 4 components: microscopic Ni/Cu/CeO2 anode, La0.9Sr0.1MnO3 cathode, copper as electron conductor, and yttria-stabilized-zirconia as oxygen ion conductor, which form microscopic electrochemical cells to enable the self-sustained electrochemical promotion for the POXR process. The SSEP catalyst exhibited much better catalytic performance in POXR of CH4 than a Ni–Cu–CeO2 catalyst and a commercial Pt–CeO2 catalyst. The CH4 conversion over the SSEP catalyst is 29.4% at 350 °C and reaches 100% at 550 °C and the maximum selectivity to H2 is on the level of 90% at 450–650 °C under a GHSV of 42,000 h−1. The mechanism of the SSEP is discussed.  相似文献   

7.
Silica supported Ni catalyst is highly active for the CO2 reforming of methane but it has poor stability due to coke formation. In this work, a glow discharge plasma was applied for the decomposition of nickel nitrate on the SiO2 support, followed by thermal calcination in air. The plasma treatment enhances the interactions between the Ni particles and the silica and significantly improves the Ni dispersion. The plasma-treated Ni/SiO2 catalyst exhibits comparable activity to the Ni/SiO2 catalyst prepared by the thermal method without plasma treatment. The coke resistance of the Ni/SiO2 catalyst is significantly enhanced by the plasma treatment.  相似文献   

8.
Equilibrium shifting is considered to be effective for promoting H2 production by methane (CH4) steam reforming. In this study, a packed bed reactor with a mixture of reforming catalyst and CO2 absorbent was used. Pellets of lithium silicate (Li4SiO4), which Toshiba has developed, were applied as the absorbent. This is a report on the relationship between CO2 absorption by Li4SiO4 pellets and the equilibrium-shift effect for overall reactions. Experiments showed that there was a strong influence of temperature on the equilibrium-shift effect. The effect was obvious, which resulted in keeping not only the concentration of H2 above 93 vol% but also that of CO below 0.2 vol% at 550 °C.  相似文献   

9.
Ni catalyst supported on MgAl2O4 mixed oxide was prepared by solid state synthesis, co-precipitation and wet impregnation. The mixed oxide support was synthesized by the solid state synthesis at room temperature (MgAl2O4solid) and co-precipitation method (MgAl2O4cop) respectively, followed by wet impregnation for Ni loading. The catalytic performances of these samples were compared in carbon dioxide reforming of methane at 700 °C. The results showed that the catalyst Ni/MgAl2O4solid with mixed oxide support prepared by solid state synthesis greatly affected the properties and performance of the catalyst. The catalyst Ni/MgAl2O4solid showed higher CO2 and CH4 conversion than the Ni/MgAl2O4cop catalyst with the support prepared by conventional co-precipitation method. In addition, the BET surface area of the catalyst Ni/MgAl2O4solid was three times larger than the catalyst Ni/MgAl2O4cop.  相似文献   

10.
The catalytic activity of Ni on a series of catalysts supported on the synthesized KH zeolite for the CO2 reforming of methane has been investigated. The KH zeolite supports were previously synthesized via silatrane and alumatrane precursors using the sol–gel process and hydrothermal microwave treatment. Eight percent Ni was impregnated onto the synthesized KH zeolites, which have different morphologies: called dog-bone, flower, and disordered shapes. The prepared Ni/KH zeolites were tested for their catalytic activity at 700 °C, at atmospheric pressure, and at a CH4/CO2 ratio of 1. The results showed that Ni supported on dog-bone and flower-shaped KH zeolites provided better activity than that of disordered KH zeolite due to higher CH4 and CO2 conversions, a higher H2 production, and a smaller amount of coke formation on the catalyst surface. Furthermore, the stability of the Ni/KH zeolite was greatly superior to that of Ni supported on alumina and clinoptiolite catalysts after 65 h on stream.  相似文献   

11.
12.
n-Butanethiol-impregnated, micrometric, pristine Ni powder (Ni–C4S) was tested as a catalyst for use in the steam reforming of methane, using X-Ray photoemission spectroscopy (XPS) and mass spectrometry (MS). The catalytic activities of both the pristine Ni and the Ni–C4S powders were measured at 700 °C, under conditions that favoured (molar CH4:H2O ratio of 2:1), and did not favour (molar CH4:H2O ratio of 1:2) formation of surface carbon. The results show that: (a) Ni–C4S demonstrates both high catalytic activity and stability during the 21 h duration test; (b) under conditions favouring the deposition of surface carbon, the Ni–C4S retained both its efficiency and structural integrity, while the catalytic activity of the Ni was reduced by ∼70% and the catalyst pellets lost their integrity; (c) the amount of deposited carbon in the case of the Ni–C4S catalyst was significantly lower than that observed for the Ni catalyst, in spite of the longer testing duration. It was concluded that the thiols pre-treatment of Ni surfaces, to be subsequently used in the production of catalysts supported SOFC anodes, can considerably increase their “active life span” this being a critical attribute in respect of their eventual commercialization.  相似文献   

13.
Nanocrystalline calcium aluminate (CaO.2Al2O3) was prepared by a simple co-precipitation method using Poly (ethylene glycol)-block-poly(propylene glycol)-block poly(ethylene glycol) (PEG-PPG-PEG, MW:5800) as surfactant and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by X-ray diffraction (XRD), N2 adsorption (BET), Temperature programmed reduction and oxidation (TPR-TPO) and Scanning electron microscopy (SEM) techniques. The results showed that the prepared support has a high potential as support for nickel catalysts in methane reforming with carbon dioxide. The results showed high catalytic activity and stability for the prepared catalysts. Among the prepared catalysts 15% Ni/CaO.2Al2O3 was the most active catalyst and showed the highest affinity for carbon formation. In addition, 7% Ni/CaO.2Al2O3 possessed high catalytic stability during 50 h time on stream. The TPO analysis revealed that increasing in nickel content increased the amount of deposited carbon over the spent catalysts. SEM results detected only whisker type of carbon for all spent catalysts.  相似文献   

14.
In this paper CO2 reforming of methane combined with partial oxidation of methane to syngas over noble metal catalysts (Rh, Ru, Pt, Pd, Ir) supported on alumina-stabilized magnesia has been studied. The catalysts were characterized by using BET, XRD, SEM, TEM, TPR, TPH and H2S chemisorption techniques. The H2S chemisorption analysis showed an active metal crystallite size in the range of 1.8-4.24 nm for the prepared catalysts. The obtained results revealed that the Rh and Ru catalysts showed the highest activity in combined reforming and both the dry reforming and partial oxidation of methane. The obtained results also showed a high catalytic stability without any decrease in methane conversion up to 50 h of reaction. In addition, the H2/CO ratio was around 2 and 0.7 over different catalysts for catalytic partial oxidation and dry reforming, respectively.  相似文献   

15.
Ni catalysts supported on different carriers like δ,θ-Al2O3, MgAl2O4, SiO2–Al2O3 and ZrO2–Al2O3 were prepared. The solids were characterized by chemical analysis, N2 adsorption–desorption isotherms, X-ray powder diffraction, UV–vis diffuse reflectance spectroscopy, temperature-programmed reduction, high-resolution transmission electron microscopy and temperature-programmed oxidation. The catalytic properties of the samples were evaluated in the reaction of reforming of methane with CO2 at 923 K. It was shown that this kind of support greatly affects the structure and catalytic performance of the catalysts. Ni catalyst supported on MgAl2O4 showed the highest activity and stability due to the presence of small well dispersed Ni particles with size of 5.1 nm. It was shown that the lowest activity of Ni catalyst supported on SiO2–Al2O3 oxide was caused by the agglomeration of nickel particles and formation of filamentous carbon under reaction conditions detected by the high resolution transmission electron microscopy.  相似文献   

16.
Nickel on zirconium-modified silica was prepared and tested as a catalyst for reforming methane with CO2 and O2 in a fluidized-bed reactor. A conversion of CH4 near thermodynamic equilibrium and low H2/CO ratio (1<H2/CO<2) were obtained without catalyst deactivation during 10 h, in a most energy efficient and safe manner. A weight loading of 5 wt% zirconium was found to be the optimum. The catalysts were characterized using X-ray diffraction (XRD), H2-temperature reaction (H2-TPR), CO2-temperature desorption (CO2-TPD) and transmission election microscope (TEM) techniques. Ni sintering was a major reason for the deactivation of pure Ni/SiO2 catalysts, while Ni dispersed highly on a zirconium-promoted Ni/SiO2 catalyst. The different kinds of surface Ni species formed on ZrO2-promoted catalysts might be responsible for its high activity and good resistance to Ni sintering.  相似文献   

17.
Due to the challenges of demands on alternative fuels and CO2 emission, the conversion of CO2 has become a hot spot. Among various methods, two-step conversion of CO2 with catalyst ceria (cerium oxide, CeO2) appears to be a promising way. Solar energy is commonly employed to drive the conversion systems. This article proposes a solar-driven system with fluidized bed reactors (FBR) for CO2/H2O conversions. N2 is used as the gas of the heat carrier. The products of CO/H2 could be further used for syngas. To evaluate the capability of the system for exporting work, the system was analysed on the basis of the Second Law of Thermodynamics and the reaction mechanism of ceria. Heat transfer barriers in practical situations were considered. The lowest solar to chemical efficiency is 4.86% for CO2 conversion, and can be enhanced to 43.2% by recuperating waste heat, raising the N2 temperature, and increasing the concentration ratio. The analysis shows that the method is a promising approach for CO2/H2O conversion to produce syngas as an alternative fuel.  相似文献   

18.
Thermodynamic equilibrium constant method and mathematical model are used to analyze the investigating effects of temperature, α[oxygen‐methane molar ratio] and β [carbon dioxide‐methane molar ratio] on characteristics of oxidative CO2 reforming of methane reaction over Ni/Al2O3 catalysts to produce hydrogen in the membrane reactor. While keeping temperature at 1100 K, the membrane reactor is no longer useful to separate hydrogen when α > 0.6 for hydrogen in reaction side is no longer to permeate side. When increasing β, the methane conversion goes up firstly until the β is 1.3, which is higher than the inflection point at 1.1 in the model prediction. The hydrogen yield peaks at β = 0.5 in permeate side. Increasing the temperature or reducing the β will cause the molar ratio of H2/CO increase. However, changing α has no significant effect on adjusting the molar ratio of H2/CO. By establishing equilibrium reaction model, the system performance can be accurately predicted. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The present study aims at exploring a concept which can convert coal-bed methane (containing methane, air and carbon dioxide) to synthesis gas. Without pre-separation and purification, the low-cost synthesis gas can be produced by coupling air partial oxidation and CO2 reforming of coal bed methane. For this purpose, the co-precipitated Ni-Mg-ZrO2 catalyst was prepared. It was found that the co-precipitated Ni-Mg-ZrO2 catalyst exhibited the best activity and stability at 800 °C during the reaction. The conversions of CH4 and CO2 maintained at 94.8% and 82.1% respectively after 100 h of reaction. The effect of reaction temperature was investigated. The H2/CO ratio in the product was mainly dependent on the feed gas composition. By changing O2/CO2 ratio of the feed gases, the H2/CO ratio in the off-gas varied between 0.8 and 1.8. The experimental results showed that the high thermal stability and basic properties of the catalyst, and the strong metal-support interaction played important roles in improving the activity and stability of the catalyst. With the combined reactions and the Ni-Mg-ZrO2 catalyst, the coal bed methane could be converted to synthesis gas, which can meet the need of the subsequent synthesis processes.  相似文献   

20.
A series of nickel-based catalyst supported on silica (Ni/SiO2) with different loading of Ce/Ni (molar ratio ranging from 0.17 to 0.84) were prepared using conventional co-impregnation method and were applied to synthesis gas production in the combination of CO2 reforming with partial oxidation of methane. Among the cerium-containing catalysts, the cerium-rich ones exhibited the higher activity and stability than the cerium-low ones. The temperature-programmed reduction (TPR) and UV–vis diffuse reflectance spectroscopy (UV–vis DRS) analysis revealed that the addition of CeO2 reduced the chemical interaction between Ni and support, resulting in an increase in reducibility and dispersion of Ni. Over NiCe-x/SiO2 (x = 0.17, 0.50, 0.67, 0.84) catalysts, the reduction peak in TPR profiles shifted to the higher temperature with increasing Ce/Ni molar ratio, which was attributed to the smaller metallic nickel size of the reduced catalysts. The transmission electron microscopy (TEM) and X-ray diffraction (XRD) for the post-reaction catalysts confirmed that the promoter retained the metallic nickel species and prevented the metal particle growth at high reaction temperature. The NiCe-0.84/SiO2 catalyst with small Ni particle size exhibited the stable activity with the constant H2/CO molar ratio of 1.2 during 6-h reaction in the combination of CO2 reforming with partial oxidation of methane at 850 °C and atmospheric pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号