首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Air-cooled chillers are widely used to provide cooling energy for air-conditioned buildings at the expense of considerable electricity. The (Air-Conditioning & Refrigeration Institute) ARI standard 550/590 sets out a rating condition to specify the coefficient of performance (COP) of the chillers under part-load conditions. This condition was found to be insufficient to deal with diverse operating conditions under the multiple chiller arrangement. This paper proposes an alternative approach to specifying more precisely the chiller COP under part-load conditions. It is desirable to establish a set of part-load performance curves showing how the chiller COP varies with the condensing temperature at various combinations of chiller loads and outdoor temperatures. The results of this paper will give engineers and researchers a better idea about how to specify the upper limit of condensing temperature for more energy efficient chillers and how chiller COP curves help compare air-cooled chillers for buildings in any climate zone and to estimate the annual electricity consumption of chillers satisfying any given building cooling load profile.  相似文献   

2.
Many central cooling systems in air-conditioned buildings have multiple chillers to meet various cooling load requirements. This paper further develops optimum load sharing strategies for the chillers in order to maximize their aggregate coefficient of performance (COP). Based on the part load performance curves of air-cooled screw chillers, it is ascertained that for two equally sized chillers operating, one should carry a full load and the other should be partially loaded to meet the system load. When two chillers of different sizes are running, the larger chiller should be fully loaded and the smaller chiller should operate at part load in order that their combined capacity satisfies the system load. Such an uneven load sharing strategy for achieving maximum COP is independent of ambient conditions and the control of condensing temperature. The variable primary flow of chilled water should be applied to chillers in order to implement the strategy. The results of this paper are useful in developing low-energy chiller plants.  相似文献   

3.
Air-cooled chillers are generally recognized as energy intensive equipment in air-conditioned buildings in the subtropical climate. This paper considers how the use of variable speed condenser fans enables these chillers to operate more efficiently. The thermodynamic model of an air-cooled screw chiller was developed using the simulation program TRNSYS and validated using the field data and specifications of the chiller. The staging of condenser fans and the control of their speed in various operating conditions were described. A comparison was made on the coefficient of performance of the chiller in the steady state with various control strategies: head pressure control with constant or variable speed condenser fans; condensing temperature control (CTC) with constant or variable speed condenser fans. Potential improvements in the chiller COP due to the use of CTC with variable speed condenser fans were discussed. The findings of this paper are useful in developing more energy efficient air-cooled chillers.  相似文献   

4.
《Building and Environment》2005,40(6):727-737
Air-cooled chillers are commonly used to provide cooling energy in commercial buildings in the subtropical climate. These chillers have long been considered inefficient because they operate under head pressure control where the condensing temperature is kept high in the refrigeration cycle. This paper considers a novel method to strategically lower the condensing temperature to enhance chiller efficiency at any outdoor temperature. An experiment is carried out on an air-cooled reciprocating chiller to confirm that an electronic expansion valve enables refrigerant to be adequately fed into the evaporator in all operating conditions, even when the condensing temperature falls to around 20 °C. By enhancing the heat rejection airflow of the condenser, both the condensing temperature and chiller power can decrease considerably with less fluctuation. According to the algorithm of staging condenser fans, this enhancement corresponds to resetting the set point of the condensing temperature based on any outdoor temperature. The potential and benefits of implementing this reset strategy are discussed.  相似文献   

5.
Air-cooled chillers are commonly used to provide cooling energy for air-conditioned buildings at the expense of considerable electricity. This paper examines the life cycle electricity cost of these chillers with the improved condenser features of condensing temperature control (CTC), evaporative pre-coolers (EC) and variable speed condenser fans (VSF). A validated model for an air-cooled screw chiller was used to ascertain how the individual and mixed features influence the annual electricity consumption of chillers in various operating conditions. It is estimated that the life cycle electricity cost savings range from HK$ 2,099,742 with EC to HK$ 6,399,564 with all the three features, with regard to a chiller plant serving an office building for 15 yr. The life cycle analysis reported here provides important insights into how to reap the benefits of energy efficient technologies for air-cooled chillers.  相似文献   

6.
建立水源热泵机组数学模型,进行部分负荷下冷冻水侧变流量对机组性能影响模拟。结果表明:变流量时流量变化范围并不与机组负荷变化成线性关系;无论定、变流量,部分负荷下冷凝温度下降,蒸发温度升高,机组COP随着负荷减小先增大后减小;在一定范围内冷冻水变流量对机组本身性能影响并不显著,却会使冷冻水泵功耗有较大幅度下降。  相似文献   

7.
《Energy and Buildings》2006,38(4):334-339
Chillers are widely used for cooling buildings in the subtropical regions at the expense of considerable energy. This paper discusses how the number and size of air-cooled chillers in a chiller plant should be designed to improve their energy performance. Using an experimentally verified chiller model, four design options were studied for a chiller plant handling the cooling load profile of an office building. Using chillers of different sizes is desirable to increase the number of steps of total cooling capacity. This enables the chillers to operate frequently at or near full load to save chiller power. Pumping energy can also be saved because of the improved control of chilled water flow whereby the chilled water supplied by the staged chillers can match with that required by air side equipment for most of the operating time. It is estimated that the annual electricity consumption of chiller plants could drop by 9.4% with the use of unequally sized chillers. The findings of this research will offer guidance on how to select chillers of different sizes for a low-energy chiller plant.  相似文献   

8.
本文从理论上对风冷及水冷系统的输入功率进行了分析。结论是在额定负荷时,风冷机组的输入功率是水冷系统总输入功率的1.35倍。考虑部分负荷时机组效率的变化及气温对机组效率的影响后,风冷机组的输入功率是水冷机组输入功率的1.26倍。  相似文献   

9.
The purpose of this paper is to clarify energy performance of the cooling plant system in the industrial building using actual measured operating data and numerical simulation analysis. One aspect of industrial buildings is that they have large energy consumption for manufacturing and air-conditioning compared with office and commercial buildings. Some examples of high-efficiency technologies installed in this particular cooling plant system are inverter chillers, integrated cooling towers and a free-cooling system. The inverter chiller which has been put on the market recently is state-of-the-art technology. The maximum COP of the inverter chiller reaches about 18 under certain conditions and integrated cooling towers make lower temperature cooling water as the whole capacity is large. Actual operating data indicates satisfied values for chiller and system COP during the running period and the simulation results show that the cooling plant system can cut down annual electric power consumption by about 48% compared with conventional cooling system.  相似文献   

10.
变频冷水机组部分负荷下冷却水定变流量性能研究   总被引:2,自引:1,他引:1  
冷水机组大部分时间是在部分负荷下运行,而变频技术的发展使得变频压缩机和变频水泵越来越多地应用到制冷空调当中。本文针对制冷循环各部件建立了稳态模型,并在模型中引入RKS方程精确计算制冷剂的热物性。模拟结果表明:变频冷水机组在部分负荷下运行,定、变冷却水流量对机组蒸发温度影响不大,但冷凝温度有不同程度的降低。同时,考察定、变冷却水流量是否节能应着重考虑冷却水系统能耗在机组总能耗中所占的比例,冷却水系统能耗比例越大,变流量节能效果越明显。  相似文献   

11.
《Energy and Buildings》2005,37(7):739-746
This paper investigates how energy signatures can be used as an alternative to an energy use intensity (describing the annual electricity consumption of chillers in kWh per unit floor area of a building in m2) to assess the energy performance of chillers with various design options and operating strategies. An energy signature is a best-fit straight line relating chiller power to a climatic index when chillers operate for a building cooling load profile. Sixteen combinations of four design options and four operating strategies for chillers serving a hypothetical hotel are studied by simulation. For each combination, an energy signature for the chillers is determined. The slope and intercept of the energy signature can be used to accurately predict the annual electricity consumption of the chillers and to evaluate the extent to which this consumption can drop when chiller efficiency is improved. It is desirable to develop reference energy signatures in relation to different characteristics of building cooling load as a yardstick for the minimum requirement of chiller performance. With this yardstick, the effectiveness of energy efficient measures in the operation of chillers could be identified.  相似文献   

12.
冷水机组在制取冷量的同时会排放大量冷凝热,回收这部分冷凝热可使冷水机组的综合COP大幅提升,系统一次能源利用率大量提高,降低热水系统的运行成本。结合上海某工厂空调系统热回收综合节能改造的案例,分析采用冷凝热回收技术后的节能效果和经济效益,为同类工厂空调系统科学、经济、合理地设计改造和运行管理提供借鉴。  相似文献   

13.
本文通过采用回归方法获得冷水机组性能系数(COP)与部分负荷率(PLR)的关系,并建立各台冷水机组能耗方程,利用遗传算法求解其最小值,从而获得各冷水机组所承担的最优负荷比率,同时根据某一实际建筑计算了其全年的冷负荷率时间分布情况,在此基础对系统冷水机组全年的运行情况进行了优化,从而达到5.7%的节能效果。  相似文献   

14.
基于冷水量变化的冷水机组性能测试与故障诊断   总被引:1,自引:0,他引:1  
研究了定流量/变温差和变流量/定温差条件下冷水量变化对机组性能的影响。结果表明:大型冷水机组蒸发器侧冷水大范围变流量不会影响系统的稳定性;在一定范围内冷水机组制冷量与冷水流量呈线性变化,系统的性能系数COP基本保持稳定,这为冷水泵的节能运行提供了良好的依据;蒸发器盘管中冷水流量较大时,允许的冷水流速变化范围可以适当增加;冷水量调节的极限速度为10.1%/min,否则会造成冷水机组运行不安全;蒸发器冷水流量变化引起的冷水机组性能变化可作为故障诊断的判断依据。  相似文献   

15.
In cities located in the subtropical regions, air-cooled chillers are commonly used to cool commercial buildings almost year-round, which accounts for considerable electricity consumption in the long term. This paper explains how a chiller plant should be designed to enable the chillers to operate frequently with maximum performance. Four design options with respect to the number and size of chillers were studied for a chiller plant satisfying the year-round cooling demand of a hotel. For each design option, the annual electricity consumption of chillers and pumps was assessed using a sophisticated chiller model. The assessment showed that an electricity saving of 10.1% can be achieved by installing a chiller plant with six chillers of three different sizes instead of four equally sized chillers. The results of this paper will give engineers and researchers a better idea about how to select chillers of different sizes and how chiller part load performance curves can be used to evaluate improvements in the energy performance of a chiller plant with alternative designs.  相似文献   

16.
The small air cooled chillers that serve an apartment building or residential villa often have the outdoor condensing units installed within a confined space. The installation distance between chiller and wall or between two chillers has significant impact on the chiller performance. In this study, three CFD (Computational Fluid Dynamics) approaches to condensing unit air management modeling are proposed and compared with each other first. The predicted air flow rates are compared to the test data as well. The comparison shows that the CFD approach with fan boundary definition is the most cost-effective, easy to be implemented, and accurate. Together with the chiller system modeling, a parametric study is further conducted to investigate the effect of the wall-chiller distance and the chiller-chiller distance on the chiller performance.  相似文献   

17.
张娴  戴新强  李翔 《暖通空调》2022,(1):117-120
结合项目当地具体气候条件,综合对比多种空调系统方案,从节能效果、初投资、运行费用等各方面计算分析,找到适合本项目的 空调系统节能设计.空调设计从系统架构特点出发,利用备用机组的制冷能力,结合磁悬浮机组部分负荷效率高的优点,实际运行时冷水机组全部运行,主机负载率为70%~80%,磁悬浮主机的COP可达15以上,配合冷却塔...  相似文献   

18.
This paper presents a strategy for improving the reliability and the energy efficiency of chiller sequencing control based on the total cooling load measurement of centralized multiple centrifugal chiller plants. The improvement is achieved as follows. Firstly, a fused measurement of building cooling load is used to replace the direct/indirect measurement. Secondly, the maximum cooling capacity of individual chillers is computed online using a simplified centrifugal chiller model. Thirdly, the online computed maximum cooling capacity is calibrated according to the quality of the fused measurement in order to deal with the possible misbehaviours in measurement instruments. A simplified model for computing the maximum cooling capacity is developed and validated using field data. The performance of the proposed chiller sequencing control strategy is tested and compared with a conventional chiller sequencing control algorithm. Test results are presented showing that the proposed strategy can effectively improve the reliability of chiller sequencing control and reduce the energy consumption of chiller plants.  相似文献   

19.
《Building and Environment》2005,40(1):143-151
This paper presents the operating efficiency of air-cooled chillers in three existing hotels and investigates the extent to which the annual electricity consumption can decrease by improving their efficiency. Chillers in these hotels tend to be improperly staged, causing their seasonal efficiency to rise by 0.05–0.12 kW/kW from a full load efficiency of 0.32 kW/kW. When chiller sequencing is restored, their seasonal efficiency could be enhanced to 0.34 kW/kW, which corresponds to an 8.8–22.7% drop in their annual electricity consumption. It is possible to further decrease the annual electricity consumption by 27.0–38.6% when the chillers operate under floating condensing temperature control instead of head pressure control. The implications of improved chiller efficiency for reducing the electricity demand of hotels are discussed.  相似文献   

20.
基于建筑全年动态冷负荷的冷水机组优化配置方案   总被引:3,自引:1,他引:2  
提出一种在设计阶段对冷水机组方案进行优化配置的方法.首先,冷水机组的能耗计算简化为制冷机的实际制冷量和冷却水进口温度两个独立变量的函数.进一步,通过建筑动态负荷计算获得全年冷负荷频率特性以及相应的室外湿球温度分布,其中湿球温度决定了冷却水最低进口温度.最终,计算出各种冷水机组配置方案的全年以及不同冷负荷需求工况下的运行电耗,并得出最优化的节能方案.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号