首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present work, an attempt has been made to combine population balance and a CFD approach for simulating the flow in oscillatory baffled column (OBC). Three-dimensional Euler-Euler two-fluid simulations are carried out for the experimental data of Oliveira and Ni [2001. Gas hold-up and bubble diameter in a gassed oscillatory baffled column. Chemical Engineering Science 56, 6143-6148]. The experimental data include the average hold-up profile and bubble size distribution in the OBC. All the non-drag forces (turbulent dispersion force, lift force) and the drag force are incorporated in the model. The coalescence and breakage effects of the gas bubbles are modeled according to the coalescence by the random collision driven by turbulence and wake entrainment while for bubble breakage by the impact of turbulent eddies. Predicted liquid velocity and averaged gas hold-up are compared with the experimental data. The profile of the mean bubble diameter in the column and its variation with the superficial gas velocity is studied. Bubble size distribution obtained by the model is compared with the experimental data.  相似文献   

2.
Population balance equations (PBEs) along with the equal surface energy criterion are used to predict phase inversion in liquid-liquid dispersed pipeline flows. Good agreement was found between theory and experiment. Our results suggest that an ambivalent range exists in terms of distance from the inlet (rather than volume fraction) which depends on system parameters.  相似文献   

3.
Gas-liquid mass transfer in a bubble column in both the homogeneous and heterogeneous flow regimes was studied by numerical simulations with a CFD-PBM (computation fluid dynamics-population balance model) coupled model and a gas-liquid mass transfer model. In the CFD-PBM coupled model, the gas-liquid interfacial area a is calculated from the gas holdup and bubble size distribution. In this work, multiple mechanisms for bubble coalescence, including coalescence due to turbulent eddies, different bubble rise velocities and bubble wake entrainment, and for bubble breakup due to eddy collision and instability of large bubbles were considered. Previous studies show that these considerations are crucial for proper predictions of both the homogenous and the heterogeneous flow regimes. Many parameters may affect the mass transfer coefficient, including the bubble size distribution, bubble slip velocity, turbulent energy dissipation rate and bubble coalescence and breakup. These complex factors were quantitatively counted in the CFD-PBM coupled model. For the mass transfer coefficient kl, two typical models were compared, namely the eddy cell model in which kl depends on the turbulent energy dissipation rate, and the slip penetration model in which kl depends on the bubble size and bubble slip velocity. Reasonable predictions of kla were obtained with both models in a wide range of superficial gas velocity, with only a slight modification of the model constants. The simulation results show that CFD-PBM coupled model is an efficient method for predicting the hydrodynamics, bubble size distribution, interfacial area and gas-liquid mass transfer rate in a bubble column.  相似文献   

4.
A dual-scale turbulence model is applied to simulate cocurrent upward gas–liquid bubbly flows and validated with available experimental data. In the model, liquid phase turbulence is split into shear-induced and bubble-induced turbulence. Single-phase standard k-εmodel is used to compute shear-induced turbulence and another transport equation is added to model bubble-induced turbulence. In the latter transport equation, energy loss due to interface drag is the production term, and the characteristic length of bubble-induced turbulence, simply the bubble diameter in this work, is introduced to model the dissipation term. The simulated results agree well with experimental data of the test cases and it is demonstrated that the proposed dual-scale turbulence model outperforms other models. Analysis of the predicted turbulence shows that the main part of turbulent kinetic en-ergy is the bubble-induced one while the shear-induced turbulent viscosity predominates within turbulent vis-cosity, especially at the pipe center. The underlying reason is the apparently different scales for the two kinds of turbulence production mechanisms:the shear-induced turbulence is on the scale of the whole pipe while the bubble-induced turbulence is on the scale of bubble diameter. Therefore, the model reflects the multi-scale phe-nomenon involved in gas–liquid bubbly flows.  相似文献   

5.
In this study, based on the Luo bubble coalescence model, a model correction factor Ce for pressures according to the literature experimental results was introduced in the bubble coalescence efficiency term. Then, a coupled modified population balance model (PBM) with computational fluid dynamics (CFD) was used to simulate a high-pressure bubble column. The simulation results with and without Ce were compared with the experimental data. The modified CFD-PBM coupled model was used to investigate its applicability to broader experimental conditions. These results showed that the modified CFD-PBM coupled model can predict the hydrodynamic behaviors under various operating conditions.  相似文献   

6.
In this work the relationship between multiphase computational fluid dynamics models and population balance models is illustrated by deriving the main governing equations from the generalized population balance equation. The resulting set of equations, consisting of the well known two-fluid model coupled with a bivariate population balance model, is then implemented in the CFD code OpenFOAM. The implementation is used to simulate a particular multiphase problem: bubbly flow in a rectangular column. Results show that, although the different mesoscale models for drag force, coalescence, breakup and mass transfer, can be improved, the agreement with experiments is nevertheless good. Moreover, although the problem investigated is quite complex, as the evolution of bubbles is solved in real-space, time and phase-space (i.e. bubble size and composition) the resulting computational costs are reasonable. This is due to the fact that the bivariate population balance model is solved here with the so-called conditional quadrature method of moments, that very efficiently deals with these problems. The overall approach is demonstrated to be efficient and robust and is therefore suitable for the simulation of many polydisperse multiphase flows.  相似文献   

7.
A population balance model is developed for describing macromixing-micromixing hierarchy of continuous flow systems based on the concept of interactive populations of fluid elements. Macromixing is represented as motion of fluid elements in the physical space described by convection-dispersion models while micromixing is described as motion in the composition space induced by randomised mass exchange interactions of fluid elements. A generalised coalescence/redispersion model is formulated, characterised by the intensity of coalescence/re-dispersion interactions and a set of random variables describing the transfer rates of species between the fluid elements. The model allows defining different micromixing rates for different species.The axial dispersion-coalescence/redispersion (ADCR) model, formulated as a special case of the general population balance model describes macromixing-micromixing hierarchy for multicomponent processes in chemical reactors. An infinite system of moment equations is derived for the joint moments of concentrations of species which is closed by applying a cumulant-neglect closure for higher order chemical reactions. Verification of the ADCR model carried out by comparing the computational results of the second-order moment equation reduction with Vassilatos’ experimental data in the case of a tubular reactor with bimolecular quasilinear chemical reaction shows good correspondence. The properties of macromixing-micromixing interactions are examined by numerical experiments using the second-order moment equation reduction. Predictions of the model in maximally micromixed states provide excellent qualitative and quantitative agreement with the results of the continuum balance equation model, and appears to be a good tool for direct modelling of macromixing-micromixing hierarchy in chemical reactors.  相似文献   

8.
An analysis of the two-fluid model in the case of vertical fully developed laminar bubbly flows is conducted. Firstly the phase distribution in the central region of the pipe (where wall effects vanish) is considered. From the model equations an intrinsic length scale L is deduced such that the scaled system reduces to a single equation without parameters. With the aid of this equation some generic properties of the solutions of the model for pipes with diameter greater than about 20L (the usual case, since L is of the order of the bubble radius) are found. We prove that in all physically meaningful solutions an (almost) exact compensation of the applied pressure gradient with the hydrostatic force occurs (with ρeff the effective density and the gravity). This compensation implies flat void fraction and velocity profiles in the central region not affected by the wall, even when no turbulence effects are accounted for.We then turn to consider the complete problem with a numerical approach, with the effect of the wall dealt via wall forces. The previous mathematical results are confirmed and the near-wall phase distributions and velocity profiles are found. With the numerical code it is also possible to investigate the regime in which the pressure gradient is greater than the weight of the pure liquid, in which case a region of strictly zero void fraction develops surrounding the axis of the pipe (in upward flow of bubbles).Finally, the same code is used to study the effect of reducing the gravity. As decreases, so does the relative velocity between the phases, making the lift force increasingly dominant. This produces, in upward bubbly flows, narrower and sharper void fraction peaks that also appear closer to the wall.  相似文献   

9.
It was previously published by the authors that granules can either coalesce through Type I (when granules coalesce by viscous dissipation in the surface liquid layer before their surfaces touch) or Type II (when granules are slowed to a halt during rebound, after their surfaces have made contact) (AIChE J. 46 (3) (2000) 529). Based on this coalescence mechanism, a new coalescence kernel for population balance modelling of granule growth is presented. The kernel is constant such that only collisions satisfying the conditions for one of the two coalescence types are successful. One constant rate is assigned to each type of coalescence and zero is for the case of rebound. As the conditions for Types I and II coalescence are dependent on granule and binder properties, the coalescence kernel is thus physically based. Simulation results of a variety of binder and granule materials show good agreement with experimental data.  相似文献   

10.
L. Liu 《Powder Technology》2010,203(3):469-476
Ultrasound particle sizing is attracting an increasing attention from academic research and industrial applications as it offers non-invasive, suitable for highly turbid and concentrated nanoparticle suspensions and potentially no sample dilution needed features. The main challenge to this technique is thought to be its capability of dealing with high concentration. Most ultrasound particle sizing techniques employ ECAH (Epstein, Carhart, Allegra and Hawley) theory based models for the inversion of ultrasound spectra to particle size distribution (PSD). However, this theory is based on “single particle scattering”, namely a single particle immersed in an infinite medium, it is therefore only valid when ultrasound attenuation and particle concentration are linearly related. With the increase of particle concentration, due to the interactions between particles, the relation between attenuation and concentration may become nonlinear for solid-liquid suspensions. This paper demonstrates a method using population balance (PB) modelling to deal with the high concentration PSD problem for silica suspensions. It concludes that with a de-aggregation model, it is possible to convert attenuation inverted PSDs (ECAH model based inversion) at high concentrations into the PSD that is thought to be the correct PSD at a critical low concentration by a PB simulation.  相似文献   

11.
Gas–liquid bubbly flows with wide range of bubble sizes are commonly encountered in many industrial gas–liquid flow systems. To assess the performances of two population balance approaches – Average Bubble Number Density (ABND) and Inhomogeneous MUlti-SIze-Group (MUSIG) models – in tracking the changes of gas volume fraction and bubble size distribution under complex flow conditions, numerical studies have been performed to validate predictions from both models against experimental data of Lucas et al. (2005) and Prasser et al. (2007) measured in the Forschungszentrum Dresden-Rossendorf FZD facility. These experiments have been strategically chosen because of flow conditions yielding opposite trend of bubble size evolution, which provided the means of carrying out a thorough examination of existing bubble coalescence and break-up kernels. In general, predictions of both models were in good agreement with experimental data. The encouraging results demonstrated the capability of both models in capturing the dynamical changes of bubbles size due to bubble interactions and the transition from “wall peak” to “core peak” gas volume fraction profiles caused by the presence of small and large bubbles. Predictions of the inhomogeneous MUSIG model appeared marginally superior to those of ABND model. Nevertheless, through the comparison of axial gas volume fraction and Sauter mean bubble diameter profiles, ABND model may be considered an alternative approach for industrial applications of gas–liquid flow systems.  相似文献   

12.
The study of bubble size distributions in direct-contact evaporators was addressed both theoretically and experimentally. Recently developed models for calculating bubble coalescence and breakage frequencies in isothermal bubble columns were adapted to the population balance equation using the bubble mass as the internal coordinate which was discretized using an expansion of the number density function by impulse functions. A sparger model was developed based on experimental data for a non-coalescing system and using bubble formation models for isothermal and non-isothermal conditions. Bubble size distributions in a direct-contact evaporator operating in the quasi-steady-state regime for four different gas superficial velocities, including the homogeneous and heterogeneous regimes, together with the sparger model, were used for estimating the three empirical parameters from the population balance model, which were observed to be functions of the gas superficial velocity. In all cases considered, the population balance model fitted the experimental data rather well and the regressed parameters exhibit the physically expected behavior with changes in the gas superficial velocity.  相似文献   

13.
Bubble breakage and coalescence phenomena and multicomponent gas-liquid mass transfer were studied in a Rushton turbine agitated vessel. Local bubble size distributions (BSD) were measured from air-tap water system at several agitation conditions with capillary suction probe (CSP) technique. The CSP was compared to the digital imaging (DI) and phase Doppler anemometry (PDA) techniques in a stirred vessel. The volumetric BSDs between the CSP and DI were in agreement, but number BSDs showed notable deviation. The limitations of measurement techniques seem to be the main reason.A multiblock stirred tank model with discretized population balances for bubbles and two-film Maxwell-Stefan multicomponent mass transfer between gas and liquid was created for the agitated vessel. The model considers local mass transfer conditions in the vessel and is simple enough for the mathematical optimization of unknown model parameters. Unknown parameters in the mechanistic bubble breakage and coalescence models were fitted against measured local BSDs. After this, a parameter in the liquid film mass transfer correlation was adjusted against absorption and desorption experiments of oxygen. Local gas-liquid mass transfer areas were calculated from the population balance model. The simulations with the validated models show good agreement against experiments. On the other hand, the fitted parameters deviate from the theoretical values, which emphasizes the need of model validation against accurate experiments. Due to their fundamental character and the validation process, the fitted models seem to be useful tools for the design and scale-up of agitated gas-liquid reactors.  相似文献   

14.
This paper presents new population balance analysis to describe simultaneous coalescence and break-up in the formation of methylmethacrylate droplets in a batch oscillatory baffled reactor. It is concluded that the droplet data can very well be described by a model in which coalescence is taken to be shear induced, selection for break-up proceeds at a rate proportional to droplet volume and approximately four equally sized break-up fragments are produced per break-up event. It is shown that the experimental droplet size distribution data are self-similar in form and exhibit asymptotic behaviour characteristics also seen in the model. The coalescence rate is found to vary as the square of the oscillation frequency and the selection rate to vary with the oscillation frequency to the power five. As a result the asymptotic mean droplet volume is inversely proportional to the oscillation frequency.  相似文献   

15.
J.E.J. Staggs 《Polymer》2007,48(13):3868-3876
A widely accepted view of the thermal degradation of polymers such as PMMA is that an initiation reaction produces radical fragments that undergo rapid depropagation and are also converted back to molecules by a termination reaction. This mechanism is applied to a population of linear molecules and radicals and the evolution of the population is modelled by appropriate discrete sets of ordinary differential equations. In particular, end-chain and random initiation reactions with first-order termination are analysed and compared with experimental data. We find on comparison with TG data for PMMA that the initiation reaction is important in dictating the qualitative behaviour of the overall rate of thermal degradation. Furthermore, the behaviour of degradation rate with initial degree of polymerisation is also investigated and interpreted within the framework of the model.  相似文献   

16.
In the present work, gas-liquid flow dynamics in a bubble column are simulated with CFDLib using an Eulerian-Eulerian ensemble-averaging method in a two-dimensional Cartesian system. The two-phase flow simulations are compared to experimental measurements of a rectangular bubble column performed by Mudde et al. [1997. Role of coherent structures on Reynolds stresses in a 2-D bubble column. A.I.Ch.E. Journal 43, 913-926] and a cylindrical bubble column performed by Rampure et al. [2003. Modeling of gas-liquid/gas-liquid-solid flows in bubble columns: experiments and CFD simulations. The Canadian Journal of Chemical Engineering 81, 692-706] for low and high superficial gas velocities, respectively. The objectives are to obtain grid-independent numerical solutions using CFDLib to reconcile unphysical results observed using FLUENT with increasing grid resolutions [Law, D., Battaglia, F., Heindel, T.J., 2006. Numerical simulations of gas-liquid flow dynamics in bubble columns. In: Proceedings of the ASME Fluids Engineering Division, IMECE2006-13544, Chicago, IL], and to validate computational fluid dynamics (CFD) simulations with experimental data to demonstrate the use of numerical simulations as a viable design tool for gas-liquid bubble column flows. Numerical predictions are presented for the local time-averaged liquid velocity and gas fraction at various axial heights as a function of horizontal or radial position. The effects of grid resolution, bubble pressure (BP) model, and drag coefficient models on the numerical predictions are examined. The BP model is hypothesized to account for bubble stability, thus providing physical solutions.  相似文献   

17.
The complex composition of the liquid media in bubble column reactors makes their understanding and theoretical modelling challenging. In this work we have studied the effect of surface tension and contaminants, salts, on the mass transfer rates from a theoretical point of view, looking for a deeper understanding on the effect of surface active species which usually reduce surface tension and modify bubble surface behaviour. The specific contact area is obtained using a population balance where the effect of the presence of contaminants is addressed by the proper theoretical closures for bubble coalescence efficiency, for partially and fully immobile surfaces, and bubble break-up. Meanwhile, the contribution of contaminants to the liquid-film resistance is implemented as function of the coverage of the surface of the bubbles. It was found that the degree of bubble surface coverage not only affects bubble coalescence but also their break-up. The ion strength defines bubbles stability and the critical Weber number can be predicted as function of ion strength. Furthermore, the mass transfer rates are function of the surface coverage by the electrolytes. The model was able to predict kLa taking into account the fact that the concentration profiles surrounding individual bubbles are not completely developed due to the presence of other bubbles, in agreement with previous results from the literature.  相似文献   

18.
付兴  李敏霞  马一太  胡灿 《化工进展》2013,32(5):991-995,1121
为了得到适用于微小通道内流动沸腾换热的预测方法,本文以近些年发表的9篇文献中的2924个实验数据点组成数据库,考虑到随着通道直径减小,表面张力对微小通道内两相流动和换热的影响起到主要作用,将Chen形式的换热模型中的核态沸腾和对流换热两部分的修正系数进行了优化。沸腾抑制系数和对流增强系数由气相韦伯数、两相雷诺数、沸腾数、气泡抑制数等量纲为1数组成,反映出了表面张力、水力直径、流动条件、热力条件对于换热的综合影响。结果表明,拟合出的微小通道中沸腾换热的新模型,适于预测水力直径3 mm以下的细管道中CHF(临界热流密度)点以前的换热系数。与实验数据比较,新模型预测的平均绝对误差为19.0%。  相似文献   

19.
This paper describes a procedure to acquire and process droplet data in a liquid-gas two phase system in order to obtain the evolution of the droplet size distribution. The droplets are characterized with respect to the mean diameter of the distribution at different positions or distances from the nozzle. The present work is based on water droplets coexisting with air at ambient conditions. A novelty also presented is the use of the least squares method to solve an inverse population balance problem in order to find the breakage kernel function which dominates the governing process. If enough information on experiments is available, this constitute a basis for two phase separator modelling.  相似文献   

20.
A novel two-dimensional rotating agglomerator was developed to carry out the flow induced phase inversion (FIPI) based granulation. The process in this agglomerator shows that a continuous paste flow (mixed with liquid binder and primary particles) is extruded into the interstice of two relatively rotating disks, as the paste becomes solidified due to the loss of heat to the disks, it is then broken into granules by the shearing force imposed by the rotating disk. Experimental measurements have shown that the size of these granules is enlarged along the positive radial direction of the disks. It is also found that these granules contain approximately the same quantity of binder in terms of its volume fraction. The paper thus proposes a population balance (PB) model to describe the growth of the granules by considering a size independent agglomeration kernel. The PB simulated results are found to be well capable of describing the change of the particle size distribution (PSD) of the granules in the radial direction. This study also proposes a velocity profile for the paste flow and attempts to establish a quantitative relationship between the granulation rate and the deformation rate as this would help us understand the mechanism of the agglomeration. It is hoped that this study would be used to improve the design of the agglomerator and to assure the control of the process and the granular product quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号