首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper examines antisolvent crystallization under a new perspective and in the unique environment offered by porous hollow fiber membrane devices. The latter are compact, extremely efficient on a volumetric basis, easy to scale up and control. Their inherent characteristics promote the creation of homogeneous concentration conditions on a scale considerably smaller than existing industrial crystallizers without the necessity of a large energy input, properties that are desirable but rarely achieved in industrial crystallizers.Mixing studies were performed to examine the maximum achievable supersaturation in porous hollow fiber devices. It was shown that they are able to offer the supersaturation levels necessary to perform antisolvent crystallization. Moreover, supersaturation is created uniformly due to the large number of feed introduction points, the membrane pores. In addition, radial mixing is substantial in contrast with traditional tubular devices and the characteristic time involved in this process is comparable to the device residence time.Porous hollow fiber antisolvent crystallization of aqueous L-asparagine monohydrate systems proved successful. Mean crystal sizes up to two times smaller compared to batch stirred crystallizers were obtained in standalone membrane hollow fiber crystallizers (MHFC) and their combinations with completely stirred tanks. The CSD was confined below for the former and for the latter, levels that are sufficient for most pharmaceutical crystalline products, for which bioavailability and formulation concerns dictate the desired CSD. In addition, porous hollow fiber devices achieved comparable or slightly higher nucleation rates with respect to batch stirred crystallizers and similar values compared to tubular precipitators. Considerable improvements can be obtained by carefully designing membrane hollow fiber crystallizers.  相似文献   

3.
Interface is critical for dual-layer membranes fabricated by co-extrusion and dry-jet wet spinning. In this work, for the first time, the importance of interface structure in overall membrane transport property was revealed by using Polysulfone (outer layer)/Matrimid (inner) dual-layer hollow fibers as a demonstration system. Due to the dope formulations of the two layers, dense skins came into formation at the shell side of Matrimid inner layer facing the interface. The Matrimid inner layer obtained from the dual-layer hollow fiber with the thinnest Polysulfone outer layer exhibited a flux around 1.0 × 10−3 kg/m2-s and a separation factor of ~800 in tert-butanol dehydration (feed flow rate 30 L/h, temperature 80 °C, permeate pressure 2 mbar, the same for the other tests). An estimation based on resistance model clearly indicated the dominance of Matrimid inner layer in the overall mass transfer of corresponding dual-layer membrane. As for hollow fibers with the thickest Polysulfone outer layer, the bulk substrate comprising the interfacial dense skin of Matrimid inner layer also displayed significant resistance and appreciable selectivity. Conclusively, the function of interface should not be ignored. The rule for the evolution of interface structure requires further exploration for fully understanding and utilizing the composite membrane by co-extrusion and phase inversion approach.  相似文献   

4.
The influence of elongation and shear rates induced by the geometry of spinnerets on gas performance of PES hollow fiber membranes has been studied. Different elongation and shear rates were introduced in various spinnerets with flow angles of 60°, 75° and 90° by changing the flow rate of dope solution. The PES hollow fiber membranes were fabricated under the wet-spun condition without extra drawing force and their gas performances were tested by using O2 and N2. The flow profiles of dope solution and the elongation and shear rates at the outermost point of the outlet of spinnerets were simulated by the computational fluid dynamics model. A hypothetic mechanism is assumed to explain the effects of elongation and shear rates on the changes of conformation of polymer chain. While trying to correlate the elongation and shear rates with the gas performance of hollow fibers, we have come to some preliminary conclusions that the elongation rate has more contribution portion in permselectivity than in permeance and the shear rate has more contribution portion in permeance than in permselectivity.  相似文献   

5.
Isoporous asymmetric polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) hollow fiber membranes were successfully made by a dry-jet wet spinning process. Well-defined nanometer-scale pores around 20–40 nm in diameter were tailored on the top surface of the fiber above a non-ordered macroporous layer by combining block copolymer self-assembly and non-solvent induced phase separation (SNIPS). Uniformity of the surface-assembled pores and fiber cross-section morphology was improved by adjusting the solution concentration, solvent composition as well as some important spinning parameters such as bore fluid flow rate, polymer solution flow rate and air gap distance between the spinneret and the precipitation bath. The formation of the well-organized self-assembled pores is a result of the interplay of fast relaxation of the shear-induced oriented block copolymer chains, the rapid evaporation of the solvent mixture on the outer surface and solvent extraction into the bore liquid on the lumen side, and gravity force during spinning. Structural features of the block copolymer solutions were investigated by small-angle X-ray scattering (SAXS) and rheological properties of the solutions were examined as well. The scattering patterns of the optimal solutions for membrane formation indicate a disordered phase which is very close to the disorder-order transition. The nanostructured surface and cross-section morphology of the membranes were characterized by scanning electron microscopy (SEM). The water flux of the membranes was measured and gas permeation was examined to test the pressure stability of the hollow fibers.  相似文献   

6.
To develop high-flux and high-rejection forward osmosis (FO) membranes for water reuses and seawater desalination, we have fabricated polybenzimidazole (PBI) nanofiltration (NF) hollow fiber membranes with a thin wall and a desired pore size via non-solvent induced phase inversion and chemically cross-linking modification. The cross-linking by p-xylylene dichloride can finely tune the mean pore size and enhance the salt selectivity. High water permeation flux and improved salt selectivity for water reuses were achieved by using the 2-h modified PBI NF membrane which has a narrow pore size distribution. Cross-linking at a longer time produces even a lower salt permeation flux potentially suitable for desalination but at the expense of permeation flux due to tightened pore sizes. It is found that draw solution concentration and membrane orientations are main factors determining the water permeation flux. In addition, effects of membrane morphology and operation conditions on water and salt transport through membrane have been investigated.  相似文献   

7.
The first oxygen permeation data of a dense hollow fiber perovskite membrane based on BaCoxFeyZrzO3 − δ are reported. The hollow fiber was prepared by a phase inversion process. Dense fibers were obtained with the following typical geometries: outer diameter, 800–900 μm; inner diameter, 500–600 μm; length, 30 cm. The O2-permeation through the hollow fiber perovskite membrane was studied in a high-temperature gas permeation cell under different operation conditions. The increase of the helium gas flow rate reduces the oxygen partial pressure (pO2) on the core side and a higher oxygen permeation flux is observed. High oxygen flux of 0.73 m3 (O2)/(m2 (membrane) h) was achieved at 850 °C under the operation parameters Fair (shell side) = 150 ml/min and FHe (core side) = 30 ml/min. The oxygen partial pressure dependence of the O2 permeation flux indicated an interplay of both surface reaction and bulk diffusion as rate limiting steps. During 5 days of permeation a high and stable oxygen flux was observed. X-ray diffraction patterns of fresh and spent membranes after the permeation measurements revealed that no degradation after oxygen permeation appears.  相似文献   

8.
Asymmetric niobium pentoxide (Nb2O5) hollow fiber membranes were prepared by the phase inversion and sintering process at temperatures ranging from 1000 to 1350°C. The effects of extrusion parameters on the morphology and properties of the produced membranes were systematically explored. Asymmetric hollow fibers with regular inner contour were obtained at extrusion flow rates of 15 and 25 ml min−1 of ceramic suspension and internal coagulant, respectively. Hollow fibers sintered at temperatures greater than 1200°C presented modifications in the morphology of Nb2O5 grains, which were also evidenced by X-ray diffraction and Raman analyses. Hollow fibers produced with an air gap of 50 mm presented a dense outer sponge-like layer and micro-voids formed from the inner surface. These hollow fibers sintered at 1200°C presented suitable bending resistance and water permeability (24.2 ± 0.60 MPa and 3.00 ± 0.01 L h-1 m-2 kPa-1, respectively). The outer sponge like layer was mitigated when the fibers were produced without air-gap.  相似文献   

9.
Polyvinylidene fluoride (PVDF) hollow fiber membranes were prepared using the solvent spinning method. N,N-dimethylacetamide was the solvent and ethylene glycol was employed as non-solvent additive. The effect of the concentration of ethylene glycol in the PVDF spinning solution as well as the effect of ethanol either in the internal or the external coagulant on the morphology of the hollow fibers was investigated. The prepared membranes were characterized in terms of the liquid entry pressure of water measurements, the gas permeation tests, the scanning electron microscopy, the atomic force microscopy, and the solute transport experiments. Ultrafiltration experiments were conducted using polyethylene glycol and polyethylene oxides of different molecular weights cut-off as solutes. A comparative analysis was made between the membrane characteristic parameters obtained from the different characterization techniques.  相似文献   

10.
We have studied the CO2/CH4 mixed gas permeation through hollow fiber membranes in a permeator. An approach to characterize the true separation performance of hollow fiber membranes for binary gas mixtures was provided based on experiments and simulations. Experiments were carried out to measure the retentate and permeate flow rates and compositions at each outlet. The influences of pressure drop within the hollow fibers, non-ideal gas behavior in the mixture and concentration polarization were taken into consideration in the mathematics model. The calculation results indicate that the net influence of the non-ideal gas behavior, competitive sorption and plasticization yields the calculated CO2 permeance in a mixed gas permeator close to that obtained in pure gas tests. Whereas the CH4 permeance is higher in the mixed gas tests than that in the pure gas tests, as the plasticization caused by CO2 dominates the permeation process. As a result, the CO2/CH4 mixed gas selectivity is smaller than those obtained in pure gas tests at equivalent pressures.The calculated membrane performance shows little changes with stage cut if the effect of concentration polarization is accounted for in the calculation. The integration method developed in this study could provide more accurate characterizations of mixed gas permeance of hollow membranes than other estimation methods, as our model considers the roles of non-ideal gas behavior and concentration polarization properly.  相似文献   

11.
陈晨  王明明  王志刚  谭小耀 《化工学报》2021,72(Z1):482-493
采用纺丝-烧结技术制备了具有内表面致密皮层的外支撑式金属镍非对称中空纤维膜,并用于乙醇自热重整(EATR)制氢,研究了温度、进料流速、吹扫气流速、水醇比(S/C)以及氧醇比(O2/C)等操作条件对膜制氢性能的影响。结果表明,金属镍非对称中空纤维膜既具有优异的EATR催化活性,又有良好的透氢性能。在500~1000℃、S/C=4、O2/C=0.8的条件下乙醇可完全转化,H2产率和H2渗透通量可分别达到81.59%和13.99 mmol/(m2·s),增加进料中氧气含量可显著抑制膜表面积炭,但同时也会降低氢气产率和一氧化碳选择性。  相似文献   

12.
Polymeric hollow fiber (HF) membranes are commercially available, i.e. microfiltration and ultrafiltration cartridges or reverse osmosis and gas separation modules, to be applied for separation purposes in industry, for instance to recover valuable raw materials or products, or for the treatment of end‐of‐pipe wastes to avoid environmental impacts, to regenerate or treat waters for reuse and for the separation of key components or clarification in food and beverage industries. They have also shown important benefits as hemodialyzers, hemodiafiltration or plasma purification devices in patients with liver or kidney damage. The good mass transport properties characterizing the polymeric HFs have opened new research areas of application in the biomedical field, such as the tissue engineering (TE) and the construction of bioartificial organs (BAO). In TE, the HFs act as scaffolds or supports and/or allow high permeance of nutrients and waste removal for cell proliferation and differentiation. In BAO, HFs are used for the fabrication of bio‐hybrid constructs that replace the damaged organs of the patient or can be used as in vitro models for therapeutic studies. This review presents the state‐of‐the‐art concerning preparation and application of HFs for TE and BAO and discusses the challenges and future perspectives of the HFs in both fields. © 2014 Society of Chemical Industry  相似文献   

13.
The purpose of this study was to assess and quantify the beneficial effects of gas exchange according to the various frequencies of the sinusoidal wave that are excited by a PZT actuator, on patients suffering from acute respiratory distress syndrome (ARDS). In this study, an experimental method for the flow hydrodynamics was developed through a bundle of sinusoidally vibrated hollow fibers to observe how well vibrations might enhance the performance of the VIVLAD. We measured the effect of the various excitation frequencies of the PZT actuator on the gas transfer rates and hemolysis from the maximum gas transfer rate. As a result, the maximum oxygen transfer rate was reached at the maximum amplitude and through the transfer of vibrations to the hollow fiber membranes. The device was maximum excited by a frequency band of 7 Hz at various water flow rates, as this frequency was the 2nd mode resonance frequency of the flexible beam. 675 hollow fiber membranes were also bundled, within the blood flow, into the device.  相似文献   

14.
SrFe0.95Mo0.05O3-δ (SFM5) perovskite hollow fiber (HF) membranes with a finger-like structure were fabricated by a phase inversion technique. The oxygen flux through SFM5 hollow fiber membrane was evaluated and reached 0.64 μmol/cm2 *s at T = 880 °C, which is 5 times higher than that of a disk SFM5 membrane (0.12 μmol/cm2 *s). A further increase in oxygen fluxes was attained by Ag deposition on the inner surface of SFM5 hollow fiber membrane. The oxygen flux of SFM5 HF membranes is governed by surface-exchange reactions on the permeate side. The equilibrium "3 − δ − lg pO2 − T" diagrams showed that doping of SF by molybdenum leads to a broadening of the cubic perovskite phase stability region.  相似文献   

15.
As the applications for polymeric membranes expand, new challenges arise. One of the largest of these challenges is the plasticization caused by strongly swelling penetrants such as carbon dioxide at elevated pressures. A considerable amount of material research has investigated crosslinking of dense film membranes to increase plasticization resistance. This paper extends such materials research to include more practically relevant asymmetric hollow fibers. Crosslinkable polyimide fibers were spun and an ester crosslinking reaction was studied using chemical and spectroscopic techniques to characterize the extent of crosslinking and to relate the effect of the reaction on fiber stability. CO2 permeance and CO2/CH4 selectivity were studied at a variety of pressures and temperatures over time to yield indications of real-world separation performance.  相似文献   

16.
In this work we evaluated the effect of adding Si as sintering additive into SiC for producing air-sintered hollow fiber membranes. According to crystallographic analyses, SiC and Si were converted to SiO2 after sintering at 1350 °C. The addition of 30 wt% of Si into SiC ceramic material promoted the binding of SiC particles and improved the membrane mechanical resistance to 42.25 ± 3.39 MPa after air sintering at 1350 °C. The produced asymmetric ceramic membrane presented a packed pore-network and micro-voids with pore sizes of 1.73 and 5.29 μm, respectively. The filtration of an oil/water emulsion enabled oil retention 98.75 ± 0.95 %. Cake formation was the main fouling occurrence and membrane regeneration with equivalent oil retention and similar steady sate flux was achieved after water cleaning under ultrasound irradiation. Thus, the use of Si as air-sintering aid was favorable for producing Si-bonded SiC hollow fiber membranes with suitable application for oil/water separation.  相似文献   

17.
A mass transfer model in consideration of multi-layer resistances through NaA zeolite membrane and lumen pressure drop in the permeate sidewas developed to describe pervaporation dehydration through scaled-up hollowfiber supported NaA zeolitemembrane. Itwas found that the transfer resistance in the lumen of the permeate side is strongly related with geometric size of hollow fiber zeolite membrane,which could not be neglected. The effect of geometric size on pervaporation dehydration could bemore significant under higher vacuumpressure in the permeate side. The transfer resistance in the lumen increaseswith the hollowfiber length but decreaseswith lumen diameter. The geometric structure could be optimized in terms of the ratio of lumen diameter to membrane length. A critical value of dI/L (Rc) to achieve high permeation flux was empirically correlated with extraction pressure in the permeate side. Typically, for a hollow fiber supported NaA zeolite membrane with length of 0.40 m, the lumen diameter should be larger than 2.0 mm under the extraction pressure of 1500 Pa.  相似文献   

18.
Polyvinylidene fluoride (PVDF) hydrophobic asymmetric hollow fiber membrane was fabricated through the dry-jet wet phase inversion process. It is found that the PVDF hollow fiber has an ultra-thin skin layer and a porous support layer from the morphology study. The fully porous membrane structure has the advantage of decreasing the vapor transport resistance and enhancing the permeation flux. The fabricated PVDF membrane has a mean pore size of in diameter and a narrow pore size distribution. The rough external surface produces an advancing contact angle of 112±3° with water. During direct contact membrane distillation (MD) of 3.5 wt% salt solution, PVDF hollow fibers produced a water permeation flux of (based on the external diameter of hollow fiber) and a NaCl rejection of 99.99% with a hot salt solution at 79.3 °C and cold distillate water at 17.5 °C. This performance is comparable to or superior to most of commercially available PVDF hollow fiber membranes, indicating that the newly developed PVDF may be suitable for MD applications.  相似文献   

19.
In order to develop high performance composite membranes for alcohol permselective pervaporation (PV), poly (dimethylsiloxane)/ZIF-8 (PDMS/ZIF-8) coated polymeric hollow fiber membranes were studied in this research. First, PDMS was used for the active layer, and Torlon®, PVDF, Ultem®, and Matrimid® with different porosity were used as support layer for fabrication of hollow fiber composite membranes. The performance of the membranes varied with different hollow fiber substrates was investigated. Pure gas permeance of the hollow fiber was tested to investigate the pore size of all fibers. The effect of support layer on the mass transfer in hydrophobic PV composite membrane was investigated. The results show that proper porosity and pore diameter of the support are demanded to minimize the Knudsen effect. Based on the result, ZIF-8 was introduced to prepare more selective separation layer, in order to improve the PV performance. The PDMS/ZIF-8/Torlon® membrane had a separation factor of 8.9 and a total flux of 847 g·m-2·h-1. This hollow fiber PDMS/ZIF-8/Torlon® composite membrane has a great potential in the industrial application.  相似文献   

20.
Ehsan Saljoughi 《Desalination》2009,249(2):850-2035
Cellulose acetate (CA) membranes are widely used for reverse osmosis (RO) and ultrafiltration (UF) applications. In this study, asymmetric CA membranes were synthesized using phase inversion method. CA with molecular weight of 52,000, polyvinylpyrrolidone (PVP) with molecular weight of 15,000 and 1-methyl-2-pyrrolidone (NMP) were used as polymer, additive and solvent, respectively. The effects of PVP concentration (at 0, 3 and 6 wt.%) and coagulation bath temperature (CBT at 0, 25 and 50 °C) on morphology, contact angle and permeability of the prepared membranes were studied and discussed. It was found out that the effects of PVP concentration and CBT depend on their values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号