首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leptin is mainly secreted by adipocytes and is implicated in the regulation of metabolic status, feed intake, and body condition. Day length (DL) can affect leptin gene expression and secretion. The aim of the study was to evaluate the effect of DL on gene expression of leptin and leptin receptors in adipose tissue (AT). Four lactating and pregnant Holstein cows were housed in a climate-controlled chamber for 51 d. The first 30 d were used to adapt animals to the new housing conditions. During that period the DL adopted was 12 h light:12 h dark (12:12). The experimental period included 3 different and consecutive phases: 7 d of neutral DL (12:12); 7 d of long DL (18 h light:6 h dark); and 7 d of short DL (6 h light:18 h dark). Subcutaneous AT biopsies were performed at the end of each phase. Prolactin, growth hormone, cortisol, leptin, glucose, nonesterified fatty acids, β-OH-butyrate, and cholesterol were determined in plasma samples. Abundance of leptin mRNA, and Ob-Ra and Ob-Rb leptin receptor mRNA were determined in AT samples by ribonuclease protection assay. Day length did not affect feed intake or body condition score. Exposure to short DL significantly reduced milk yield (13.1 ± 2.2 vs. 15.8 ± 1.7 and 16.0 ± 2.0 kg/d for short vs. neutral and long DL, respectively). Plasma leptin, growth hormone, cortisol, nonesterified fatty acids, β-OH-butyrate, and glucose were not affected by DL; cholesterol was lowest under short DL (3.93 ± 0.38 vs. 4.36 ± 0.39 and 4.07 ± 0.38 mmol/L for short vs. neutral and long DL, respectively). Prolactin increased under long DL (134.82 ± 16.94 vs. 81.98 ± 20.25 and 96.16 ± 0.38 ng/mL for long vs. neutral and short DL, respectively). Gene expression of leptin and its receptors was affected by DL. Leptin mRNA increased under long DL (11.91 ± 0.84 vs. 7.82 ± 0.84 and 7.56 ± 0.84 pg of mRNA/μg of total RNA for long vs. neutral and short DL, respectively). Leptin receptors Ob-Ra and Ob-Rb mRNA were higher under long DL, whereas Ob-Ra and Ob-Rb mRNA were lower under short DL (Ob-Ra: 1.91 ± 0.41, 2.49 ± 0.41, and 0.65 ± 0.41 pg of mRNA/μg of total RNA for neutral, long, and short DL, respectively; Ob-Rb: 5.29 ± 0.79, 5.98 ± 0.68, and 2.02 ± 0.70 pg of mRNA/μg of total RNA for neutral, long, and short DL, respectively). Results of the present study appear to exclude an effect of feed intake and metabolic status on leptin gene expression. A prolactin-mediated effect of photoperiod on AT leptin modulation may be proposed in lactating dairy cows.  相似文献   

2.
In transition dairy cows, plasma levels of the insulin-sensitizing hormone adiponectin fall to a nadir at parturition and recover in early lactation. The transition period is also characterized by rapid changes in metabolic and hormonal factors implicated in other species as positive regulators of adiponectin production (i.e., negative energy balance, lipid mobilization) and others as negative regulators (i.e., reduced leptin and insulin and increased growth hormone and plasma fatty acids). To assess the role of onset of negative energy balance and lipid mobilization after parturition, dairy cows were either milked thrice daily (lactating) or never milked (nonlactating) for up to 4 wk after parturition. Plasma adiponectin was 21% higher across time in nonlactating than lactating cows. Moreover, nonlactating cows recovered plasma adiponectin at similar rates as lactating cows even though they failed to lose body condition. Next, we assessed the ability of individual hormones to alter plasma adiponectin in transition dairy cows. In the first experiment, dairy cows received a constant 96-h intravenous infusion of either saline or recombinant human leptin starting on d 8 of lactation. In the second experiment, dairy cows were studied in late pregnancy (LP, starting on prepartum d ?31) and again in early lactation (EL, starting on d 7 postpartum) during a 66-h period of basal sampling followed by 48 h of hyperinsulinemic-euglycemia. In the third experiment, cows were studied either in LP (starting on d ?40 prepartum) or EL (starting on d 7 postpartum) during a 3-h period of basal sampling followed by 5 d of bovine somatotropin treatment. Plasma adiponectin was reduced by an average of 21% in EL relative to LP in these experiments, but neither leptin, insulin, or growth hormone treatment affected adiponectin in LP or EL. Finally, the possibility that plasma fatty acids repress plasma adiponectin was evaluated by intravenous infusion of a lipid emulsion in nonpregnant, nonlactating cows in the absence or presence of glucagon for 16 consecutive hours. The intralipid infusion increased plasma fatty acid concentration from 102 to over 570 µM within 3 h but had no effect on plasma adiponectin irrespective of presence or absence of glucagon. Overall, these data suggest that energy balance around parturition may regulate plasma adiponectin but do not support roles for lipid mobilization or sustained changes in the plasma concentration of leptin, insulin, growth hormone, or fatty acids.  相似文献   

3.
This study aimed to evaluate metabolic and endocrine adaptations to energy intake in multiparous Holstein cows (n = 90; mean 9434 kg energy-corrected milk yield/305 d) over the first 20 wk postpartum and to assess the association of leptin with metabolic, endocrine, and zootechnical traits. Concentrates were fed automatically for 24 h at 30% (C30) or 50% (C50) of total dry matter intake (DMI) from wk 1 to 10 postpartum and at linearly reduced amounts thereafter. Roughage was fed for ad libitum intake. The DMI was measured over 24 h; milk yield and body weight (BW), twice/d; milk composition, 4 times/wk; and milk acetone, weekly. Blood samples for determination of metabolite, hormone, and electrolyte concentrations and enzyme activities were obtained at wk 2 prepartum, and at wk 1 to 16 and at wk 20 postpartum from 0730 to 0900. Body condition scores (BCS) and backfat thickness were measured postpartum and during wk 1, 4, 8, 12, 16, and 20. Energy balance (EB) was considerably lower, but milk yield only slightly lower, in C30 than C50. Metabolic stress was more marked in C30 than C50, expressed by lower, glucose, insulin, insulin-like growth factor-1 (IGF-1), triiodothyronine, milk protein, and lactose concentrations, higher nonesterified fatty acid, beta-hydroxybutyrate, growth hormone, and milk acetone concentrations, and an accelerated decrease in BCS and backfat thickness. Nevertheless, C30 adapted successfully and thus maintained high milk yields despite negative EB. Leptin concentrations were lower in C30 than in C50 over the first 20 wk postpartum and were positively associated with BCS, EB, BW, cholesterol, albumin, insulin, and IGF-1; negatively associated with DMI and triiodothyronine; and were higher in cows calving in spring than in fall. Leptin is one among several factors involved in the regulation of energy metabolism and may be important for overall homeostatic and homeorhetic control of metabolism and thus for maintenance of performance.  相似文献   

4.
We hypothesized that plasma adipokine concentrations of early-lactation dairy cows are related to body condition score (BCS) at calving and to markers of metabolic status of the cow. As part of a larger study with 117 multiparous Holstein dairy cows, which had high BCS (BCS >4.0) or normal BCS (3.25–3.5) at calving, 22 cows were randomly selected (n = 11 per group) to be enrolled in this study. Cows were divided into 2 groups based on their BCS at calving: (1) normal BCS with BCS of 3.35 ± 0.13 (mean ± SD) and (2) high BCS cows with BCS of 4.14 ± 0.17. The 22 selected animals did not have a clinically diagnosed health problem after calving. Blood samples were taken right after calving (d 1) and before morning feeding on d 8, 15, and 21 postpartum concurrently with body condition scoring for all cows. Blood samples were analyzed for plasma adiponectin, leptin, tumor necrosis factor-α, and IL-6. The mean BCS remained highest in high-BCS cows during the first 21 d in milk. Leptin concentrations decreased progressively for all cows after calving. However, differences in BCS at calving were not related to leptin concentrations. Adiponectin, IL-6, and tumor necrosis factor-α concentrations were neither influenced by days in milk nor BCS after calving. Leptin and the leptin-to-adiponectin ratio did not show any correlation at any time point during the first 21 d in milk with plasma concentrations of nonesterified fatty acids or β-hydroxybutyrate, which are considered as markers of metabolic status. Only for IL-6 at d 8 did we find a strong correlation with metabolic status indicators. In conclusion, plasma adipokine concentrations during the first 3 wk postpartum were not related to BCS in lactating Holstein cows that were clinically healthy at calving.  相似文献   

5.
(Co)variance components for body condition score (BCS), body weight (BW), BCS change, BW change, and milk yield traits were estimated. The data analyzed included 6646 multiparous Holstein-Friesian cows with records for BCS, BW, and(or) milk yield at different stages of lactation from 74 dairy herds throughout Southern Ireland. Heritability estimates for BCS ranged from 0.27 to 0.37, while those for BCS change ranged from 0.02 to 0.10. Heritability estimates for BW records varied from 0.39 to 0.50, while heritabilities for BW change were similar to those observed for BCS change (0.03 to 0.09). The genetic correlations between BCS and BW at the same days in milk deviated little from 0.50, and the genetic correlations between BCS change and BW change over the same period ranged from 0.42 to 0.55. BCS and BW directly postpartum were both phenotypically and genetically negatively correlated with both BW change and BCS change in early lactation. The genetic correlations between BCS and milk yield were negative. The results of the present study show that animals that lose most BCS in early lactation tend to gain most BCS in late lactation, a trend also exhibited by BW.  相似文献   

6.
The effects of metabolizable protein (MP) supply on the synthesis of plasma total proteins and albumin, as well as total hepatic protein synthesis, were determined in 6 multicatheterized lactating Holstein cows. Three TMR formulated to supply the same amount of energy but different amounts of MP, 1,922 (low), 2,264 (medium), and 2,517 g of MP/d (high), were fed every 2 h according to a double 3 × 3 Latin square design. For the low and high MP treatments, the cows were continuously infused with [2H5]Phe (d5-Phe) into a jugular vein for 8 h (1.3 mmol/h) on d 21 of each period. Concentration and isotopic enrichment of d5-Phe were measured for free plasma Phe, plasma total proteins, and albumin on hourly samples collected between 3 and 8 h. Low MP decreased the plasma albumin concentration (32.3 vs. 33.7 ± 0.11 g/L) but the plasma total protein concentration was unchanged (74.1 vs. 75.6 ± 1.13 g/L). Incorporation of d5-Phe over time into both plasma total proteins and albumin was linear (R2 > 0.98). Neither fractional nor absolute synthesis rates of plasma total proteins (6.8 vs. 6.5 ± 0.65%/d; 168 vs. 154 ± 19.9 g/d) or albumin (3.4 vs. 3.4 ± 0.10%/d; 36.3 vs. 36.5 ± 1.11 g/d) were affected by the MP supply. Net hepatic removal of Phe was lower with the low-MP diet (−12.3 vs. −20.2 ± 1.98 mmol/h). As a result, net hepatic Phe removal used for total export protein synthesis (17.9 vs. 11.1 ± 1.83%) and albumin synthesis (4.6 vs. 2.9 ± 0.54%) tended to be greater at low MP. These results suggest that hepatic synthesis of plasma proteins, including albumin, is maintained in lactating dairy cows even when the protein supply is reduced.  相似文献   

7.
《Journal of dairy science》2023,106(2):822-842
Mobilization of body reserves including fat, protein, and glycogen is necessary to overcome phases of negative nutrient balance typical for high-yielding dairy cows during the periparturient period. Skeletal muscle, the largest internal organ in mammals, plays a crucial role in maintaining metabolic homeostasis. However, unlike in liver and adipose tissue, the metabolic and regulatory role of skeletal muscle in the adaptation of dairy cows to the physiological needs of pregnancy and lactation has not been studied extensively. The functional integrity and quality of skeletal muscle are maintained through a constant turnover of protein, resulting from both protein breakdown and protein synthesis. Thus, muscle protein breakdown (MPB) and synthesis are intimately connected and tightly controlled to ensure proper protein homeostasis. Understanding the regulation of MPB, the catabolic component of muscle turnover, and its assessment are therefore important considerations to provide information about the timing and extent of tissue mobilization in periparturient dairy cows. Based on animal models and human studies, it is now evident that MPB occurs via the integration of 3 main systems: autophagy-lysosomal, calpain Ca2+-dependent cysteine proteases, and the ubiquitin-proteasome system. These 3 main systems are interconnected and do not work separately, and the regulation is complex. The ubiquitin-proteasomal system is the most well-known cellular proteolytic system and plays a fundamental role in muscle physiology. Complete degradation of a protein often requires a combination of the systems, depending on the physiological situation. Determination of MPB in dairy cows is technically challenging, resulting in a relative dearth of information. The methods for assessing MPB can be divided into either direct or indirect measurements, both having their strengths and limitations. Available information on the direct measures of MPB primarily comes from stable isotopic tracer methods and those of indirect measurements from assessing expression and activity measures of the components of the 3 MPB systems in muscle biopsy samples. Other indirect approaches (i.e., potential indicators of MPB), including ultrasound imaging and measuring metabolites from muscle degradation (i.e., 3-methylhistidine and creatinine), seem to be applicable methods and can provide useful information about the extent and timing of MPB. This review presents our current understanding, including methodological considerations, of the process of MPB in periparturient dairy cows.  相似文献   

8.
Spray-dried plasma protein (SDP) compared with blood meal (BM) may contain various functional and active components that may benefit animal health. The objective of this experiment was to investigate the effects of feeding SDP or BM on production and blood profile in dairy cows during the transition and early-lactation periods. Seventy-two Holstein cows at 14 d before calving were used in a randomized block design. During the prepartum period, cows were fed a typical late-gestation diet containing BM (100 g/cow per day; 100BM, n = 24) or SDP (100 g/cow per day; 100SDP; n = 48). After calving, cows that were fed BM prepartum were fed a typical lactation diet formulated to provide 100 g/d of BM (100BM). Half the cows that were fed 100SDP prepartum were fed a lactation diet formulated to provide 100 g/d of SDP (100SDP; n = 24), and half were fed a diet formulated to provide 400 g/d of SDP (400SDP; n = 24) on a dry matter basis where SDP replaced BM (100SDP) or BM and soybean products (400SDP). All diets were balanced for crude protein concentration and metabolizable protein supply assuming BM and SDP were equal in rumen-degradable protein and rumen-undegradable protein. All data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) as a randomized block design where contrasts were made for 100BM versus 100SDP for prepartum variables and 100BM versus 100SDP and 100SDP versus 400SDP for postpartum variables. Prepartum supplementation of SDP had no effect on plasma fatty acids and β-hydroxybutyrate (2 d before calving). Plasma fatty acids (255 ± 29 µEq/mL) and β-hydroxybutyrate (675 ± 70 µmol/L) at 8 and 14 d of lactation were not affected by SDP in the diet. Feeding SDP at 100 g/d compared with 100BM increased or tended to increase milk fat, protein, and lactose contents for 16 wk after parturition. Providing SDP at 400 g/d in the diet increased milk yield (42 vs. 39 kg/d), energy-corrected milk (44 vs. 41 kg/d), energy-corrected milk per kilogram of dry matter intake, and yields of milk fat (1.60 vs. 1.48 kg/d), protein (1.21 vs. 1.16 kg/d), and lactose compared with 100SDP. Body weight losses tended to be lower for 100SDP compared with 100BM without a difference between 100SDP and 400SDP. Plasma histidine concentration (d 14 of lactation) was lower for SDP compared with 100BM. In addition, plasma 1-methyl-l-histidine tended to be lower as inclusion rate of SDP increased. In conclusion, SDP at 400 g/d increased milk and milk component yields without an increase in feed intake. Studies evaluating effects of functional and active compounds in SDP on gut microbiome, gut health, and immune functions may be needed to determine mode of action.  相似文献   

9.
The objective was to investigate the associations between body condition scores (BCS) and daily body weight (BW) in the first 150 d of lactation (DIM) and reproductive performance in high-producing dairy cows. Data included automated daily BW measurements and BCS of 2,020 Israeli Holstein cows from 7 commercial farms. Individual BW series were smoothed using penalized cubic splines, and variables representing BW patterns were generated. The presence of 7- and 21-d cycles in BW was determined using time-series analysis. Associations between BW and BCS and conception at first artificial insemination (AI) were analyzed using generalized estimating equations. Multivariate survival analysis was used for associations between BW and BCS and the calving-to-first AI interval, first AI-to-conception interval, and calving-to-conception interval. First-parity cows that lost ≥12% and second-parity cows that lost ≥15% of their BW from calving to nadir BW were less likely to conceive at first AI. Cows without 7-d cycles in BW were 1.48 times more likely to conceive at first AI relative to cows with 7-d cycles. The odds of conceiving at first AI increased by 53% for each additional unit in BCS from 40 to 60 DIM. In the multivariate survival analysis, a BCS of ≤2.5 between 40 and 60 DIM, the percentage of BW lost from calving to nadir BW, and a BW loss of ≥7% from calving to 10 DIM were associated with reduced reproductive performance. The presence of 21-d cycles in BW was associated with high reproductive performance in first-parity [odds ratio (OR) = 1.18] and second-parity cows (OR = 1.22). The presence of 7-d cycles in BW was associated with low reproductive performance in first-parity cows (OR = 0.77), but not in older cows. Based on previous findings and on the associations found in this study, we postulate that 21-d cycles are probably related to the sexual cycle and could be used as a proxy for assessing ovarian activity. Variables representing relative BW loss (%) were better predictors for impaired reproductive performance than those representing absolute BW loss (kg) and may be more suitable for estimating individual adaptation to negative energy balance in herds for which automated daily BW is available.  相似文献   

10.
Betaine is a natural compound found in sugar beets that serves as a methyl donor and organic osmolyte when fed to animals. The objective was to evaluate the effect of feeding betaine-containing molasses on performance of transition dairy cows during late summer in 2 trials. In early September, cows were randomly assigned to betaine (BET) or control (CON) groups either shortly after dry off (trial 1; n = 10 per treatment) or 24 d before calving (trial 2; n = 8 per treatment) based on parity and previous mature equivalent milk yield. Cows were fed common diets supplemented either with a liquid supplement made of molasses from sugar cane and condensed beet solubles containing betaine [BET, 89.1 g/kg of dry matter (DM)] or a sugar cane molasses-based liquid supplement without betaine (CON) until 8 wk postpartum. The liquid supplements had similar nutrient contents and were fed at a rate of 1.1 and 1.4 kg DM/d for pre- and postpartum cows, respectively. Starting at their entry in the studies, cows were housed in the same freestall barn without a cooling system. After calving, all cows were housed in the same barn cooled by misters and fans and milked thrice daily. Intake was recorded daily and body weight and body condition score were assessed every 2 wk. Milk yield was recorded at each milking and composition was analyzed weekly. Blood samples were collected weekly from a subset of cows to assess concentrations of metabolites and AA. No treatment effects were apparent for DM intake and body weight in the prepartum and postpartum periods. For cows enrolled at dry off, BET supported higher milk yield (45.1 vs. 41.9 kg/d) and fat content (4.78 vs. 4.34%) and elevated plasma concentrations of nonesterified fatty acids and β-hydroxybutyrate in early lactation compared to CON. However, no differences were observed for milk yield, most milk component contents and yields, and blood metabolites between treatments for cows enrolled during the close-up period. Compared to cows in the CON group, BET cows enrolled during the far-off period tended to have lower plasma concentrations of Met, Thr, and Trp during the pre- and postpartum periods. They also had lower plasma concentrations of Lys and Phe before calving but higher plasma Gly concentration after parturition. In conclusion, feeding a betaine-containing liquid supplement from far-off through early lactation improves lactation performance but increases adipose tissue mobilization and production of ketone bodies in early lactation.  相似文献   

11.
Twenty-four multiparous Holstein cows were used to determine the effects of dietary fat and glucose precursors on energy status and lactation. The treatment group (T) received 409 g/d (DM basis) of a combination of calcium salts of fatty acids, calcium propionate, and propylene glycol. The control group (C) received 409 g/d of a mixture of calcium salts of fatty acids and ground barley from 14 +/- 0.9 g/d before until 21 d after calving. Dry matter intake was greater (16.1 vs. 13.6 +/- 1.3 kg/d) for T than C during the last week prepartum and did not decrease for T from the previous week, whereas, in C, DM intakes decreased by 3.2 kg/d. Production of milk and milk fat did not differ. There was a tendency for lower protein and increased lactose concentrations in milk from T cows. Milk fat percentage was lower in T at d 7 (5.5 vs. 6.4 +/- 0.5%) and 28 (4.4 vs. 5.5 +/- 0.5%) of lactation. Liver lipid content was numerically lower (7.9 vs. 9.2 +/- 0.9%) and glycogen content was significantly higher (2.4 vs. 2.0 +/- 0.1%) in T vs. C cows on d 7 of lactation. Concentrations of nonesterified fatty acids were lower in blood of T cows on d 2 and 7 of lactation. Over all time points, blood glucose concentrations were higher in T cows pre- (70.75 vs. 62.1 +/- 1.3 mg/dL) and postpartum (60.1 vs. 56.2 +/- 1.1 mg/dL). Insulin concentrations in blood were greater for T (397 vs. 314 +/- 48 pg/mL) both pre- and postpartum. Feeding glucose precursors in combination with rumen inert lipids, compared with feeding barley in combination with the lipids for 2 wk before parturition and 3 wk postpartum helped avoid prepartum feed intake depression and increased blood glucose and insulin and decreased blood NEFA.  相似文献   

12.
13.
The hormonal and metabolic signals that communicate the level of body energy reserves to the reproductive-mammary axis remain undefined in dairy cattle; consequently, our hypothesis was that leptin may fulfill this role. Our objectives were to determine the effects of diets differing in energy and protein density on dry matter intake (DMI), growth traits [body weight (BW), body condition score (BCS), back-fat (BF) thickness], and temporal changes in plasma concentrations of leptin, insulin, growth hormone (GH), insulin-like growth factor-1 (IGF-1), glucose, and nonesterified fatty acids (NEFA) in dairy heifers during the pre- and postpubertal periods. In period 1, heifers were randomly allotted (n = 10/diet) at 103 kg of BW to diets for a predicted average daily gain of 1.10 (high, H), 0.80 (medium, M), or 0.50 kg/d (low, L). Five heifers in each of the H and L groups were further studied during period 2, either at 12 mo of age (HA, LA) or at 330 kg of BW (HW, LW). The data provide evidence that 1) DMI (18%), BW (17%), and BF (5%) together explained 40% of the variation in plasma leptin concentrations (r2 = 0.396); 2) unlike the acute postprandial increase in plasma insulin as a result of increased nutrient density (H 1.42 ± 0.09, M 1.02 ± 0.09, L 0.68 ± 0.11 ng/mL), plasma leptin concentrations did not respond acutely with a distinct postprandial profile; 3) although plasma leptin concentrations increased with age, leptin at puberty did not differ among treatment groups (H 5.63 ± 2.48, M 4.28 ± 0.55, L 4.12 ± 0.72 ng/mL) and there was no evidence of an abrupt transition in prepubertal plasma leptin concentrations; 4) plasma leptin concentrations may not be a critical trigger for puberty in rapidly growing heifers, but are apparently essential for puberty in heifers with normal or restricted growth rates; and 5) plasma concentrations of insulin (H 0.59 ± 0.07, M 0.43 ± 0.09, L 0.30 ± 0.09 ng/mL), IGF-1 (H 151.08 ± 16.47, L 82.51 ± 17.47 ng/mL), and glucose (H 81.35 ± 3.39, M 73.59 ± 2.34, L 68.25 ± 3.39 mg/dL) reflected nutrient density, whereas GH (H 1.82 ± 0.23, L 5.87 ± 0.45 ng/mL) and NEFA (H 209.54 ± 50.83, L 234.93 ± 48.97 μM) were inversely related to the plane of nutrition. Collectively, these data suggest that plasma concentrations of leptin may play a role in long-term regulation of energy reserves and puberty in growing Holstein heifers.  相似文献   

14.
Four rumen cannulated Finnish Ayrshire cows in midlactation were used in an experiment designed as a 4 x 5 incomplete Latin square with 2-wk periods to compare effects of glucogenic substrates on grass silage-based diets. The five treatments were continuous infusions of 1) water (control), 2) casein 300 g/d, 3) glucose 300 g/d, 4) propionic acid 247 g/d, and 5) barley starch 270 g/d. Substrates were infused either into the rumen (propionic acid) or into the abomasum (other substrates). As a basal diet, cows were fed a formic acid treated grass silage ad libitum (digestible organic matter 690 g/kg dry matter [DM], crude protein [CP] 131 g/kg DM) and a barley-rapeseed concentrate (CP 141g/kg DM) at a rate of 7 kg/d. Production responses to glucogenic substrates other than casein were negligible, suggesting that glucose supply of the cows did not primarily limit milk production. However, with casein cows produced significantly more milk, milk protein, and lactose than with other glucogenic substrates. Casein increased urea and essential amino acid (EAA), and decreased nonessential AA (NEAA) in arterial plasma compared with other substrates, suggesting that casein provided precursors both in terms of NEAA for gluconeogenesis and EAA for milk protein synthesis. This puts forward that providing the AA needs of the mammary gland for milk protein synthesis are met, glucose supply may become the next limiting factor for milk protein synthesis in cows fed diets based on restrictively fermented grass silage. The limited supply of AA from the basal diet, and possibly the low production levels of cows partly invalidated the hypothesis of monitoring differing glucogenic substrates for grass silage-based diets.  相似文献   

15.
The objective of the present study was to investigate the potential of the urea dilution technique, coupled with live animal measures to predict the body components of dairy cattle. The study involved 104 lactating Holstein-Friesian cows offered grass silage-based diets. Urea space volume (USV) was calculated from 2 collection periods of blood samples following infusion of urea at 12 (USV12, kg) and 30 (USV30, kg) min after infusion, and then as a proportion of live weight (LW) or empty body weight (EBW). All cows were slaughtered within 2 d of the USV trials. Large ranges existed in EBW and empty body concentrations of water, crude protein (CP), lipid, ash, and gross energy (GE). The USV12 and USV30 were both positively related to LW, EBW, and empty body component weights. The r2 values for USV12 were greater than USV30. The r2 values in the relationships of EBW and empty body composition with USV, however, were smaller than those with LW. Nevertheless, the relationships were improved when both USV and LW were used as predictors, rather than using either alone. Adding milk yield and body condition score as supporting predictors to prediction equations using USV and LW data for EBW, lipid, and GE contents further improved the relationships (r2 = 0.93, 0.66, and 0.77, respectively). Internal evaluation of one-third of the present data using equations developed from two-thirds of the present data indicated that using USV, live weight, and other live animal variables as predictors, rather than using USV alone, considerably improved the prediction accuracy. It was concluded that USV can be used to predict body composition, but the relationships with USV were poorer than those with LW. The USV can only be used as a supporting variable to live weight for prediction of body components in lactating dairy cows.  相似文献   

16.
为探讨瘦素在奶牛乳腺发育、泌乳及退化各时期的表达变化规律及在乳腺组织中的具体位置,采用免疫印迹(western blot-ting)技术及激光共聚焦技术检测奶牛乳腺组织中瘦素及瘦素受体(OB-Rb)的表达变化及其定位。结果表明,瘦素在青春期表达量较高,在泌乳期表达量最低。瘦素受体在青春期和妊娠期表达量较高,泌乳期表达量相对较低,退化期逐渐恢复到妊娠期水平。  相似文献   

17.
Feeding practices, ration composition, and body condition scores (BCS) were assessed in an observational case-contrast study of Norwegian dairy herds with low (n = 98) and high (n = 94) mastitis infection rates. Differences between the 2 groups of herds were associated with feeding practices and amount of roughage. More herds in the low-infection group were fed a reduced amount of roughage at drying off, and reduced rations during the dry period resulted in lower BCS at calving. Cows in the low-infection herds had significantly lower BCS in the last month before calving and the first month of lactation than cows in the high-infection herds. The significant associations between mastitis infection rates and BCS, frequency of concentrate feeding, and amount of roughage at drying off and during the dry period indicated that feeding practices may have an important influence on the risk of mastitis in Norwegian dairy cows.  相似文献   

18.
The beginning of lactation requires huge metabolic adaptations to meet increased energy demands for milk production of dairy cows. One of the adaptations is the mobilization of body reserves mainly from adipose tissue as reflected by increased plasma nonesterified fatty acid (NEFA) concentrations. The capacity of the liver for complete oxidation of NEFA is limited, leading to an increased formation of ketone bodies, reesterification, and accumulation of triglycerides in the liver. As the skeletal muscle also may oxidize fatty acids, it may help to decrease the fatty acid load on the liver. To test this hypothesis, 19 German Holstein cows were weekly blood sampled from 7 wk before until 5 wk after parturition to analyze plasma NEFA concentrations. Liver biopsies were obtained at d 3, 18, and 30 after parturition and, based on the mean liver fat content, cows were grouped to the 10 highest (HI) and 9 lowest (LO). In addition, muscle biopsies were obtained at d −17, 3, and 30 relative to parturition and used to quantify mRNA abundance of genes involved in fatty acid degradation. Plasma NEFA concentrations peaked after parturition and were 1.5-fold higher in HI than LO cows. Muscle carnitine palmitoyltransferase 1α and β mRNA was upregulated in early lactation. The mRNA abundance of muscle peroxisome proliferator-activated receptor γ (PPARG) increased in early lactation and was higher in HI than in LO cows, whereas the abundance of PPARA continuously decreased after parturition. The mRNA abundance of muscle PPARD, uncoupling protein 3, and the β-oxidative enzymes 3-hydroxyacyl-coenzyme A (CoA) dehydrogenase, very long-chain acyl-CoA dehydrogenase, and 3-ketoacyl-CoA was greatest at d 3 after parturition, whereas the abundance of PPARγ coactivator 1α decreased after parturition. Our results indicate that around parturition, oxidation of fatty acids in skeletal muscle is highly activated, which may contribute to diminish the fatty acid load on the liver. The decline in muscle fatty acid oxidation within the first 4 wk of lactation accompanied with increased feed intake refer to greater supply of ruminally derived acetate, which as the preferred fuel of the muscle, saves long-chain fatty acids for milk fat production.  相似文献   

19.
The effect of increasing the postpartum metabolizable protein (MP) supply on performance and mammary metabolism was studied using 8 Holstein cows in a complete randomized design. At parturition, cows were assigned to abomasal infusion of water (CTRL) or casein (CAS). Arterial and epigastric venous blood samples were taken 14 d before expected parturition and at 4, 15, and 29 d in milk (DIM). To compensate previously estimated deficiency of essential AA and to avoid oversupply, casein protein infusion was graduated with 696 ± 1, 490 ± 9, and 212 ± 10 g/d at 4, 15 and 29 DIM, respectively. Dry matter intake was unaffected by CAS. Compared with CTRL, MP supply was greater at 4 DIM with CAS but did not differ by 29 DIM. Milk yield was greater with CAS (+7.2 ± 1.3 kg/d from 1 to 29 DIM). Milk protein yield was greater with CAS at 4 DIM and averaged 1,664 ± 39 g/d compared with 1,212 ± 86 g/d for CTRL, but did not differ at 29 DIM (1,383 ± 48 g/d). The ratio of MP total supply to requirement was numerically greater at 4 DIM for CAS compared with CTRL, indicating less postpartum protein deficiency. In contrast, a greater net energy deficiency tended to be induced with CAS, but the greater milk yield allowed a large part of mobilized fat to be secreted in milk. Arterial concentration of total essential AA increased sharply after parturition for CAS compared with slight decreases for CTRL. The patterns of arterial concentrations combined with arterial-mammary venous concentration differences indicated that Lys, Leu, and Tyr were the first-limiting AA at 4 DIM with CTRL. Mammary plasma flow was unaffected by treatment, indicating similar perfusion of mammary tissue. The greater milk yield with CAS was associated with greater mammary uptake of individual essential AA, tendencies to greater uptake of glucose, lactate, and β-hydroxybutyrate, whereas uptakes of volatile fatty acids were unaffected. Despite similar MP supply by 29 DIM, milk and lactose yields were greater with CAS indicating a persistent response to increased postpartum MP supply. In conclusion, the postpartum MP deficiency can have a substantial negative effect in dairy cows as the major outcome of increasing the postpartum MP supply was increased milk, milk protein, and lactose yield, as well as an enhanced MP balance. Potential positive effects for other body functions than milk synthesis are discussed. Future investigations are needed to delineate how to transfer the effect into practical feeding strategies.  相似文献   

20.
During the transition period, the lipid metabolism of dairy cows is markedly affected by energy status. Fatty liver is one of the main health disorders after parturition. The aim of this study was to evaluate the effects of a negative energy balance (NEB) at 2 stages in lactation [NEB at the onset of lactation postpartum (p.p.) and a deliberately induced NEB by feed restriction near 100 d in milk] on liver triglyceride content and parameters of lipid metabolism in plasma and liver based on mRNA abundance of associated genes. Fifty multiparous dairy cows were studied from wk 3 antepartum to approximately wk 17 p.p. in 2 periods. According to their energy balance in period 1 (parturition to wk 12 p.p.), cows were allocated to a control (CON; n = 25) or a restriction group (RES; 70% of energy requirements; n = 25) for 3 wk in mid lactation starting at around 100 d in milk (period 2). Liver triglyceride (TG) content, plasma nonesterified fatty acids (NEFA), and β-hydroxybutyrate were highest in wk 1 p.p. and decreased thereafter. During period 2, feed restriction did not affect liver TG and β-hydroxybutyrate concentration, whereas NEFA concentration was increased in RES cows as compared with CON cows. Hepatic mRNA abundances of tumor necrosis factor α, ATP citrate lyase, mitochondrial glycerol-3-phosphate acyltransferase, and glycerol-3-phosphate dehydrogenase 2 were not altered by lactational and energy status during both experimental periods. The expression of fatty acid synthase was higher in period 2 compared with period 1, but did not differ between RES and CON groups. The mRNA abundance of acetyl-coenzyme A-carboxylase showed a tendency toward higher expression during period 2 compared with period 1. The solute carrier family 27 (fatty acid transporter), member 1 (SLC27A1) was upregulated in wk 1 p.p. and also during feed restriction in RES cows. In conclusion, the present study shows that a NEB has different effects on hepatic lipid metabolism and TG concentration in the liver of dairy cows at early and later lactation. Therefore, the homeorhetic adaptations during the periparturient period trigger excessive responses in metabolism, whereas during the homeostatic control of endocrine and metabolic systems after established lactation, as during the period of feed restriction in the present study, organs are well adapted to metabolic and environmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号