首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tb3+ doped Zn2SiO4 films have been deposited on SiO2 buffered Si wafers by sol–gel method. The structures of these films have been investigated with X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The results revealed that these films were composed of nanometer-size grains with a Willemite structure and had smooth surfaces. Photoluminescence measurements of the films showed a strong emission from 5D4 to 7F5 at 544 nm. The blue emission from 5D37Fj was depressed because of cross-relaxation effect. The decay kinetics of the 5D47F5 green emission was studied and a best fitting was obtained by a double exponential function. The lifetime of the excited 5D4 state is estimated to be 5.2 ms.  相似文献   

2.
Lead-free (Ba0.93Ca0.07)(Ti0.95Zr0.05)O3 (BCZT) ceramics were prepared using a solid-state reaction technique. The structure and electrical properties were investigated with a special emphasis on the influence of sintering temperature. Crystalline structures and microstructures were analyzed by X-ray diffraction and scanning electron microscope (SEM) at room temperature. The BCZT ceramics sintered at 1450 °C show the highest densification and exhibit excellent piezoelectric properties of high piezoelectric coefficient d33 = 387 pC/N, planar mode electromechanical coupling coefficient kp = 44.2%, mechanical quality factor Qm = 140 and Curie temperature Tc = 108 °C.  相似文献   

3.
(Na0.5Bi0.5)0.93Ba0.07TiO3 ceramics added with 0–0.8 wt.% CeO2 were prepared by a citrate method, and the influence of the CeO2 addition on the structure and electrical properties was investigated. The specimens containing various amounts of CeO2 show the coexistence of rhombohedral and tetragonal phases, with the relative content of the tetragonal phases gradually enhancing with increasing amount of CeO2. Compared with (Na0.5Bi0.5)0.93Ba0.07TiO3, the specimen added with a small amount of CeO2 (≤0.2 wt.%) display a slightly improved electromechanical coupling factor (kp) and piezoelectric constant (d33) in conjunction with a reduced dielectric loss (tg δ) and an enhanced mechanical quality factor (Qm), while higher CeO2 amounts led to a rapid deterioration of the piezoelectric and ferroelectric properties. The variation of the electrical properties with the CeO2 addition was tentatively interpreted with respect to doping effect, crystal-structural evolution and stability of ferroelectric domains.  相似文献   

4.
High-quality Gd0.94(P1−xVx)O4:Eu0.06 (0 ≤ x ≤ 1.0) powders having small size, spherical morphology, smooth surface, and nonaggregation are synthesized by the ultrasonic spray pyrolysis. The complex host composition, Gd0.94(P1−xVx)O4:Eu0.06 (x ≥ 0.5), shows a single phase with the tetragonal xenotime structure. The introduction of V5+ ions in the P5+ lattice yields the deviation from the centrosymmetry of Eu3+ ions. By increasing the V5+ content, the emission intensity corresponding to the 5D0 → 7F1 transition decreases. On the other hand, the emission intensity corresponding to the 5D0 → 7F2 transition increases up to x = 0.5, and then decreases upon further increasing the V5+ content. The emission intensity, peaking at 620 nm, of complex composition Gd0.94(P0.5V0.5)O4:Eu0.06 is approximately five and two times stronger than that of the Gd0.94PO4:Eu0.06 and Gd0.94VO4:Eu0.06, respectively. It is believed that the introduction of the complex composition Gd0.94(P1−xVx)O4:Eu0.06 is highly effective for improving the emission properties.  相似文献   

5.
The (Zn1-xCox)2-W type barium hexaferrite thin films have been prepared by a radio frequency magnetron sputtering method on the Si (100) and the Si (111) substrates respectively. With increasing the annealing temperatures (800, 850, 900, 950, and 1000 °C), the Ba(CoZn)2Fe16O27 phases emerge from the amorphous matrix. The hexaferrite thin films on Si (111) substrates have a larger saturation magnetic field (636.6 kA/m) than those on Si (100) substrates (159.1 kA/m). The magnetic hysteresis measurements show that they exhibit an isotropic behavior for thin films deposited on both substrates. Films on the Si (111) substrates are magnetically harder than those on the Si (100) substrates.  相似文献   

6.
The time dependent preferential sputtering in the HfO2 layer on Si(100) has been investigated in-situ with X-ray photoelectron spectroscopy during Ar ion sputtering. Hf4f, O1s, and Si2p spectra show that three bonding environments (Hf0+ from the Hf metal, Hf2+ from HfO, and Hf4+ from HfO2) co-exist inside the HfO2 layer during sputtering. The Hf4+ doublet decreases with sputtering time in an exponential-like function. Both Hf0+ and Hf2+ doublets increase with sputtering time in opposite ways. Two concurrent sputtering mechanisms characterizing the formation of HfO and Hf due to preferential sputtering of oxygen within the HfO2 layer can well explain the detailed bond breaking and re-formation process. The Hf metal is the final product and the HfO is an intermediate product during sputtering under vacuum. The HfO cannot be removed and acts as a residual component in the HfO2 layer.  相似文献   

7.
Yb2+ ion doped Ba5(PO4)3Cl phosphor was synthesized by solid state reaction. Four distinct absorption bands were observed in the Ultraviolet (UV) light region due to the electronic transitions of Yb2+ ion from 1S0 ground state to 2F5/2(t2g), 2F5/2(eg), 2F7/2(t2g), and 2F7/2(eg) excited states. The main emission wavelength of the phosphor was around 630 nm. The optimized Yb2+ ion concentration was 0.2 mol% (λexc. = 400 nm). The calculated critical distance was about 8.729 Å and the concentration quenching was observed above 0.2 mol% due to the electric dipole–dipole interaction.  相似文献   

8.
Effect of Li2O-B2O3-SiO2 (LBS) glass on the sintering behavior and the microwave dielectric properties of (Zn0.8 Mg0.2)2SiO4-TiO2 (ZMST) ceramics were investigated. The Li2O-B2O3-SiO2 glass lowered the sintering temperature of ZMST ceramics effectively from 1250 to 870 °C. The unknown second phase, which was formed in the ZMST ceramics increased with the addition of LBS glass. With increasing the LBS glass content, the bulk density, dielectric constant (εr) and the maximum Q × f value decreased, and the temperature coefficient of resonant frequency (τf) shifted to a negative value. (Zn0.8 Mg0.2)2SiO4-TiO2 ceramics with 3 wt.% Li2O-B2O3-SiO2 glass sintered at 870 °C for 2 h shows excellent dielectric properties: εr = 8.48, Q × f = 11500 GHz, and τf = 0 ppm/°C.  相似文献   

9.
We successfully synthesized (Gd0.94−xTb0.06Mx)PO4 (M: Al and Zn; 0 ≤ x ≤ 0.06) green phosphors by ultrasonic spray pyrolysis and investigated their photoluminescence characteristics. The synthesized (Gd0.94−xTb0.06Mx)PO4 phosphor powders showed a spherical morphology and a smooth surface. The phosphors emitted a green light due to the transition from 5D4 to 7Fj of Tb3+ (j = 3–6) at 489, 544, 585, and 621 nm, respectively. The partial incorporation of Al or Zn for Gd up to x = 0.45 in (Gd0.94Tb0.06)PO4 phosphors yielded a significant rise in the emission intensity. The (Gd0.895Tb0.06Al0.045)PO4 and (Gd0.895Tb0.06Zn0.045)PO4 phosphors showed 31 and 13% stronger emission intensity at 544 nm, respectively, compared to (Gd0.94Tb0.06)PO4 phosphor.  相似文献   

10.
Room temperature time-resolved photoluminescence (TR-PL) measurements have been performed on Cu(In,Ga)Se2 (CIGS) thin films and solar cells to clarify the recombination process of the photo-generated minority carrier. Both films and solar cells exhibited PL decay curves composed of the dominant fast (0.7-2 ns) and weak slow (3-10 ns) exponential decay curves. PL lifetime of the cell is longer than that of the thin films, indicating the longer minority carrier lifetime for the hetero-structures than in thin films. The increase of PL lifetime is consistent with the enhancement of the PL intensity and the elimination of defect-related PL as a result of the solar cell formation. These results are discussed in terms of the recombination process of carriers in films and hetero-structures. The relationship between the PL lifetime of the CIGS solar cells and the cell conversion efficiency is described.  相似文献   

11.
Chul-Hwan Choi 《Thin solid films》2007,515(5):2864-2871
High-quality ferromagnetic Zn1−xCoxO thin films were deposited on a sapphire (0001) substrate at 600 °C by using reactive radio-frequency magnetron sputtering coupled with post-annealing treatment for 1 h at 580 °C under an Ar atmosphere. High resolution X-ray diffraction patterns show that hexagonal wurzite crystal structures of undoped ZnO film were maintained even after Co doping up to 4.5 at.% without forming Co clusters or oxides. X-ray photoelectron spectroscopy spectra represent the energy difference of 15.42 eV between Co2p3/2 and Co2p1/2, which is different from 15.05 eV of Co clusters. The characteristic absorption bands near 658, 616, and 568 nm wavelengths out of UV-VIS-IR spectroscopy spectra are correlated with the d-d transitions of tetrahedrally coordinated Co2+ ions. The low temperature photoluminescence spectrum for undoped ZnO shows a strong near-band edge (NBE) emission peak of 3.42 eV without deep level emission peaks. But, Co content increases in Zn1−xCoxO film, the NBE emission peak intensity decreases and another emission peak at 3.37 eV as well as a broad green emission peak at around 2.5 eV starts to appear with larger intensity due to the more actively creating oxygen vacancies. The emission peak at 3.37 eV proves the interaction between Co ions and the hydrogenic electrons in the impurity band and also supports the typical ferromagnetic hysteresis curves obtained by superconducting quantum interface device magnetometry at 300 K for Zn1−xCoxO films. High insulator characteristics are observed for as-grown Zn1−xCoxO films whereas it exhibits n-type characteristics with the increased carrier concentration, mobility, and resistivity after post-growth annealing. The spintronic devices could be fabricated with the utilization of Zn1−xCoxO films grown by the economically feasible reactive radio-frequency magnetron sputtering coupled with the post annealing treatment.  相似文献   

12.
GaN nanorods were synthesized by ammoniating Ga2O3/In2O3 thin films deposited on Si (111) with magnetron sputtering. X-ray diffraction, Scanning electronic microscope and high-resolution TEM results show that they are GaN single crystals, the sizes of which vary from 2 to 7 μm in length and 200 to 300 nm in diameter. In2O3 middle layer plays an important role in the GaN nanorod growth.  相似文献   

13.
BaTiO3 thin films were prepared by using metal organic acid salts on MgO(100) substrates, which have large lattice-misfit with BaTiO3. Amorphous films prefired at 470°C were crystallized to BaTiO3 phase by heat treatment at higher temperature. Crystallinity and in-plane alignment of the prepared films were found to depend on the heat-treatment conditions. BaTiO3 films with high crystallinity but poor (100)-orientation were obtained in air at higher than 1200°C. Whereas, (100)-oriented epitaxial BaTiO3 film was fabricated by annealing at 900°C under low oxygen partial pressure (p(O2)). Low carbon dioxide partial pressure (p(CO2)) is also found to be essential for preparation of epitaxial BaTiO3 films on MgO substrates by using metal organic acid salts.  相似文献   

14.
利用光催化技术将CO2转化为燃料有望解决能源危机和温室效应.Zn1–2x(CuGa)xGa2S4具有可见光响应及较高的导带电势,从热力学角度上看是较为理想的CO2还原材料,但是其光催化CO2还原活性仍然较低,亟待从动力学角度提高其活性.本研究采用Zn0.4(CuGa)0.3Ga2S4与不同比例的CdS纳米颗粒复合,制备...  相似文献   

15.
New compounds: Mg3Fe4(VO4)6 and Zn3Fe4(VO4)6 were obtained from a solid state reaction. The temperatures of melting of Mg3Fe4(VO4)6 and Zn3Fe4(VO4)6 amount to 950±5 and 850±5°C, respectively. The indexing results and the calculated unit cell parameters for both compounds are given and suggest that both phases are isotypic with Mn3Fe4(VO4)6. The IR spectra of the above-mentioned compounds are presented.  相似文献   

16.
The structural, electrical, dielectric, magnetic and magnetoelectric properties of (x)Ni0.8Zn0.2Fe2O4 + (1 − x)Pb0.93La0.07(Zr0.60Ti0.40)O3 (x = 0, 0.15, 0.30, 0.45 and 1) have been studied by means of various experimental techniques. Polycrystalline samples of this series have been prepared by the double sintering ceramic method. X-ray diffraction data analysis revealed purity of the composites. Microstructural analysis using scanning electron microscopy mode depicts the presence of two phases in contact with each other. Dielectric properties were studied at and well above room temperature. Temperature dependent variation of the dielectric constant show diffused phase transition which can be well described by fitting the Lorentz-type relation, . Observation of well-saturated ferroelectric hysteresis loop and magnetic hysteresis loop for composites indicates that ferroelectric and magnetic ordering exist simultaneously at room temperature. The static value of magneto electric voltage coefficient (αE) has been studied as a function of magnetic field at room temperature for all the composites. The maximum value of αE is 7.53 mV/(cm Oe) for 85% PLZT-15% NZFO composites.  相似文献   

17.
Titanium nitride TiNx (0.1 ≤ x ≤ 1) thin films were deposited onto Al2O3(0001) substrates using reactive magnetron sputtering at substrate temperatures (Ts) ranging from 800 to 1000 °C and N2 partial pressures (pN2) between 13.3 and 133 mPa. It is found that Al and O from the substrates diffuse into the substoichiometric TiNx films during deposition. Solid-state reactions between the film and substrate result in the formation of Ti2O and Ti3Al domains at low N2 partial pressures, while for increasing pN2, the Ti2AlN MAX phase nucleates and grows together with TiNx. Depositions at increasingly stoichiometric conditions result in a decreasing incorporation of substrate species into the growing film. Eventually, a stoichiometric deposition gives a stable TiN(111) || Al2O3(0001) structure without the incorporation of substrate species. Growth at Ts 1000 °C yields Ti2AlN(0001), leading to a reduced incorporation of substrate species compared to films grown at 900 °C, which contain also Ti2AlN(101?3) grains. Finally, the Ti2AlN domains incorporate O, likely on the N site, such that a MAX phase oxynitride Ti2Al(O,N) is formed. The results were obtained by a combination of structural methods, including X-ray diffraction and (scanning) transmission electron microscopy, together with spectroscopy methods, which comprise elastic recoil detection analysis, energy dispersive X-ray spectroscopy, and electron energy loss spectroscopy.  相似文献   

18.
Zn4O13C24H12 framework (MOF-5) can occupy either cubic or tetragonal structure. It was recognized that the tetragonal MOF-5 was a distorted cubic MOF-5 caused by filling effect of ZnO or solvent. However, herein, it was found that the ZnO and solvent inside the pores of the framework did not cause the distortion of cubic MOF-5. Furthermore, the distortion is strongly dependent on the solvent vacuumed to dry the framework. If the vacuumed solvent was dimethylformamide (DMF), the crystal structure of MOF-5 was tetragonal. In contrast, if DMF was displaced by CH2Cl2 before the vacuum, the obtained MOF-5 occupied a perfect cubic structure. The thermal decomposition of cubic and tetragonal MOF-5s produced the same products: CO2, benzene, amorphous carbon, and crystal ZnO. However, the thermal decomposition of cubic MOF-5 requires a higher temperature than the tetragonal one, indicating that cubic MOF-5 is more stable than the tetragonal one.  相似文献   

19.
Pb(Zn1/3Ta2/3)O3 ceramics, compositionally modified by the incorporation of Fe to the octahedral lattice sites, were prepared and characterized in terms of perovskite development, dielectric properties, as well as microstructure evolution. The powders of the B-site precursor compositions were synthesized separately and reacted with PbO to form Pb[(Zn1/3Ta2/3),(Fe1/2Ta1/2)]O3. The perovskite contents increased continuously with the Fe concentration. The maximum dielectric constant values of the ceramics increased tremendously with the fraction of Fe, whereas the dielectric maximum temperatures were rather insensitive to the compositional change.  相似文献   

20.
The order-disorder transition in Ba(Zn1/3Ta2/3)O3 (BZT) was characterized by using Raman spectroscopy, transmission electron microscopy (TEM), and cathodoluminescence (CL) microscopy. The 1:2 ordered structure of pure BZT ceramics was replaced by a 1:1 ordered structure at 1650 °C and the 1:1 ordered structure of BZT sintered at 1650 °C exhibited a 1:2 ordered structure when it was reannealed at 1500 °C for 12 h. The A1g lines in the Raman spectrum of the sintered and reannealed samples were shifted to lower and higher wavenumbers, respectively. From the CL analysis, the 1:1 ordered BZT exhibited mainly three emission bands at around 533.2 (2.32 eV), 599.1 (2.07 eV), and 682.1 nm (1.81 eV), whereas the 1:2 ordered BZT exhibited mainly five bands at 346.4 (3.58 eV), 427.5 (2.90 eV), 520.9 (2.38 eV), 593.0 (2.09 eV), and 678.9 nm (1.82 eV). The strongest band originating from 2.32 to 2.38 eV was broadened, and the band center shifted towards a higher and lower wavelength in the 1:1 and 1:2 ordered BZT, respectively. Additional bands at around 346 and 427 nm in the grain interior of the annealed sample were strongly related to the 1:2 ordering of BZT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号