首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
采用两步固相原位烧结掺杂法制备了一系列镍掺杂的锂离子电池正极材料LiFe1-xNixPO4(x=0、0.03、0.05、0.07、0.10、0.15).Ni替代部分Fe,改变了LiFePO4的晶胞参教,细化了晶粒.充放电实验研究表明,低放电倍率(0.1C)时,LiFe0.095Ni0.05PO4的首次放电容量最大,为155mAh/g,较LiFePO4增加了22.8%;0.5C时,其容量为132mAh/g,较LiFePO4增加了14.7%;放电倍率增加为1C时,其容量也能达到122mAh/g,较LiFePO4增加了16.1%.适量掺杂Ni可提高LiFePO4的充放电比容量,改善其高倍率充放电性能.  相似文献   

2.
以高密度FePO4作为前躯体,Cu(Ac)2为掺杂源,通过高温固相法合成了高振实密度的锂离子电池正极材料LiFe1-xCuxPO4/C(x=0、0.01、0.015、0.02、0.025).采用X粉末衍射(XRD)、电子扫描显微镜(SEM)、循环伏安法(C-V)和恒电流充放电对合成的材料掺杂进行了结构、形貌和电性能表征和分析研究.结果表明, 所合成的掺杂复合材料LiFe1-xCuxPO4/C为典型的橄榄石型结构,结晶度高,具有较高的振实密度.掺杂Cu2+离子在很大程度上可以提高LiFePO4的电化学性能,当Cu含量为2.0%(质量分数)时,LiFe0.98Cu0.02PO4/C的振实密度可以达到1.98g/cm3,比容量为最大值,0.1C倍率放电可达150.0mAh/g,体积比容量为297.0mAh/cm3;2C倍率放电比容量仍可以达到127.3mAh/g以上,体积比容量为252.1mAh/cm3.  相似文献   

3.
使用改进固相法,通过正交实验,考察了锂铁比、葡萄糖加入量,焙烧温度、焙烧时间四因素对LiFePO4正极材料电化学性能的影响.在优化LiFePO4合成条件下合成出具有优良电化学性能的LiFePO4/C正极材料,此方法避免使用球磨机,有利于工业化生产.使用XRD、SEM、循环伏安、交流阻抗对合成产物进行一系列性能分析,室温下0.1C倍率首次放电比容量139.6mAh/g,循环活化后容量上升并稳定至148mAh/g左右,30次循环后容量仍保持在147.4mAh/g.  相似文献   

4.
李军  黄慧民  魏关锋  夏信德  李大光 《材料导报》2007,21(11):125-126,129
为提高LiFePO4的电化学性能,通过固相合成法制备了掺碳的LiFePO4正极材料,并用XRD、SEM、电化学工作站及充放电测试等对样品的性能进行了研究分析.结果表明,少量的碳掺杂并未改变LiFePO4的晶体结构但显著改善了其电化学性能,LiFePO4/C样品的粒度较小,粒径分布均匀,0.1C首次放电比容量为141.9mAh/g,循环50次后容量下降了11.2mAh/g,以1C倍率首次放电比容量为126.5mAh/g,循环50次后容量保持率为87.2%.  相似文献   

5.
用两种碳源制备高性能LiFePO4/C正极材料   总被引:6,自引:0,他引:6  
为了提高LiFePO4材料的电化学性能,以碳溶胶和葡萄糖两种物质为碳源、采用高温固相法制备了LiFePO4/C复合正极材料.通过XRD、TEM、恒电流充放电等方法研究了材料的结构与电化学性能.XRD结果表明,两种碳源的添加对LiFePO4的晶体结构没有影响.从TEM图上可观测到颗粒外部明显的碳包覆层.电化学性能测试表明,在同样倍率下,以两种碳源制备的LiFePO4/C材料放电比容量高于以单一碳源制备的LiFePO4/C,且表现出优良倍率性能和循环稳定性:在0.1C下的放电比容量达162mAh/g,1C下放电比容量为157mAh/g,循环20次后容量没有任何衰减.  相似文献   

6.
采用高温固相法合成了组成为Li(MnxFe1-x)PO4(x=0、0.2、0.4、0.6、0.8、1.0)的锂离子电池正极材料。通过对合成样品的XRD、SEM及电化学性能(循环性能,大电流放电性能)的研究表明,少量Mn的掺杂未影响到LiFePO4的晶体结构,但显著改善了它的电化学性能。Li(Mn0.2Fe0.8)PO4与LiFePO4材料相比有更好的电化学性能,在低放电倍率(电流密度为20mA/g)时,放电容量为150mAh/g,当放电倍率提高到2C时,放电容量仍可达113mAh/g,且循环性能良好。  相似文献   

7.
以乙二醇为溶剂,采用溶胶一凝胶法合成了LiFePO4/C.采用X射线衍射、扫描电镜、透射电镜和电化学阻抗谱等分析测试方法,研究了600-750℃范围内合成的LiFePO4/C的微观结构特征、在不同放电倍率下的循环稳定性和放电容量等电化学性能.研究结果表明,合成温度对LiFePO4的结晶状况及LiFePO4/C电极的电化学性能有着显著的影响.700℃烧结的产物结晶完整,颗粒细小(-150nm)均匀,电化学性能有了显著的提高,0.5C的放电容量达到150mAh/g,1C的放电容量仍有141mAh/g,经200个循环,放电容量基本保持不变.  相似文献   

8.
用共沉淀法合成Fe0.97Mn0.03PO4前驱体,再通过碳热还原法合成多元掺杂的Li0.97 δTi0.03Fe0.97Mn0.03PO4/C复合材料,利用X射线衍射(XRD),扫描电镜(SEM)、傅立叶红外光谱(FTIR)等测试手段对样品的晶体结构、表观形貌、谱学性质等进行了分析研究,对其倍率放电性能及循环性能等进行了测试,并与不掺杂的LiFePO4/C复合材料进行了比较.研究表明,掺杂过程中,掺杂的Mn4 、Ti4 离子能与LiFePO4形成单一的橄榄石型晶体结构,晶型完整,产物形貌规则,平均粒径在1um左右.用Li0.97 δTi0.03Fe0.97Mn0.03PO4/C为正极材料制作的电池分别以0.2,1,5、10C倍率放电,首次放电容量为134.0、133.4,130.1和127.2mAh·g-1,并表现出良好的循环性能.  相似文献   

9.
利用碳热还原法合成了Li1-xMgxFePO4/C(x=0.00、0.01、0.02、0.03、0.04、0.05、0.1)正极材料,通过XRD、SEM、BET、CV、EIS和恒流充放电实验研究了不同掺杂量对产物结构和电化学性能的影响。结果表明少量Mg的掺杂未影响到LiFePO4的晶体结构,但显著改善了其电化学性能。其中,Li0.98Mg0.02FePO4/C材料具有更好的电化学性能,0.1C倍率放电时,首次放电容量达到165.2mAh/g,且循环性能良好。另外,对合成材料的红外光谱进行了研究和指认。  相似文献   

10.
采用高温固相法合成了Li1-xVxCryFe1-yPO4/C(x=0.01、0.02;y=0.01、0.02)锂离子电池正极材料,通过XRD、SEM、C-V和恒电流充放实验研究了不同掺杂量对产物结构和电化学性能的影响.研究表明,少量V和Cr的掺杂未影响到LiFePO4的晶体结构,但显著改善了它的电化学性.其中,Li0.99V0.01Cr0.02Fe0.98PO4/C材料具有更好的电化学性能,0.1C倍率放电时,首次放电容量达到163.8mAh/g,且循环性能良好.另外,对合成材料的红外光谱进行了研究和指认.  相似文献   

11.
采用三氧化二铁(Fe2O3)为铁源,抗坏血酸作碳源,通过在200℃下水热反应并经煅烧后合成出LiFePO4/C纳米复合材料.抗坏血酸在水热反应体系中不但作为最终反应产物的碳源,而且还起到了限制LiFePO4颗粒生长的作用.抗坏血酸的用量对产物的形貌、结构、碳含量有重要影响,进而影响产物的电化学性能.当抗坏血酸用量为1 g时,制得的LiFePO4/C纳米复合材料的粒径在220~280 nm.该材料用作锂离子电池的正极材料时,在0.1C的电流密度下循环500次后其放电容量仍保持159 mAh/g,并且具有较好的倍率性能.  相似文献   

12.
13.
Lithium–oxygen batteries have an ultrahigh theoretical energy density, almost ten times higher than lithium‐ion batteries. The poor conductivity of the discharge product Li2O2, however, severely raises the charge overpotential and pulls down the cyclability. Here, a simple and effective strategy is presented for regular formation of lithium vacancies in the discharge product via tuning charge/discharge mode, and their effects on the charge transfer behavior. The effects of the discharge current density on the lithium vacancies, ionic conductivity, and electronic conductivity of the discharge product Li2O2 are systematically investigated via electron spin resonance, spin‐alignment echo nuclear magnetic resonance, and tungsten nanomanipulators, respectively. The study by density functional theory indicates that the lithium vacancies in Li2O2 generated during the discharge process are highly dependent on the current density. High current can induce a high vacancy density, which enhances the electronic conductivity and reduces the overpotential. Meanwhile, with increasing discharge current, the morphology of the Li2O2 changes from microtoroids to thin nanoplatelets, effectively shortening the charge transfer distance and improving the cycling performance. The Li2O2 grown in fast discharge mode is more easily decomposed in the following charging process. The lithium–oxygen battery cycling in fast‐discharge/slow‐charge mode exhibits low overpotential and long cycle life.  相似文献   

14.
Measurements are presented for the nucleate pool boiling of LiBrH2O solutions at concentrations typically used in LiBrH2O air conditioning systems. A commercial grade copper tube was used for all tests as being typical of the testing surface likely to be used in a commercial plant.The object of this work was to correlate nucleate boiling heat transfer for pure water and aqueous solutions using Re, Pr number expressions and thermophysical properties of the boiling liquid and vapour at a clean surface. Such an equation is proposed and tested.  相似文献   

15.
Lithium/sulfur (Li/S) cells have great potential to become mainstream secondary batteries due to their ultra-high theoretical specific energy. The major challenge for Li/S cells is the unstable cycling performance caused by the sulfur’s insulating nature and the high-solubility of the intermediate polysulfide products. Several years of efforts to develop various fancy carbon nanostructures, trying to physically encapsulate the polysulfides, did not yet push the cell’s cycle life long enough to compete with current Li ion cells. The focus of this review is on the recent progress in chemical bonding strategy for trapping polysulfides through employing functional groups and additives in carbon matrix. Research results on understanding the working mechanism of chemical interaction between polysulfides and functional groups (e.g. O–, B–, N–and S–) in carbon matrix, metal-based additives, or polymer additives during charge/discharge are discussed.
  相似文献   

16.
通过溶胶-凝胶工艺制得具有良好湿敏特性的LiCl/SiO2-Al2O3薄膜材料,利用XRD和AFM对这类薄膜进行了结构表征,结果表明,具有纳米分相结构的薄膜在全湿范围内阻抗值的变化〉3个数量级,阻抗的对数值与相对湿度的关系具有较好的线性度,吸湿响应〈30s,脱湿响应〈60s。  相似文献   

17.
锂离子电池正极材料Li2+2xTi1-xCux(NbO4)2的研究   总被引:1,自引:0,他引:1  
采用高温固相反应合成了Li2+2xTi1-xCux(NbO4)2,XRD分析表明当x≤0.8时均能得到与LiFePO4相同的橄榄石结构.电导率测定结果表明x=0.6的合成物室温电导率最高,为1.26×10-5S/cm,且当x≥0.6时合成物都表现出离子电导的特征.以x=0.6的合成物做成的待测电极与锂片组成电池,在1mol/L的LiPF6/EC+DMC(1∶1)电解液中在0.5~4.6V间以0.10mA/cm2的电流密度进行电池循环测试的结果表明,该电池的首次放电比容量高达805.8mAh/g,放电平台在对Li+/Li电对为2V附近,但其可逆性及循环性均有待改善.  相似文献   

18.
改进固相法制备LiFePO4/C正极材料及其性能   总被引:1,自引:0,他引:1  
采用改进的固相反应法制备了掺碳的磷酸铁锂正极材料,并用XRD,SEM,元素分析,红外光谱及激光粒度分布仪等对样品进行了测试分析.结果表明,样品具有单一的橄榄石结构和较好的放电平台(约3.4V),粒度较小粒径分布均匀,0.1C首次放电比容量为137.8mAh/g,循环20次后容量保持率为92.6%,以1C倍率首次放电比容量为129.6mAh/g,循环20次后容量下降10.8%.  相似文献   

19.
Lithium (sodium)‐metal batteries are the most promising batteries for next‐generation electrical energy storage due to their high volumetric energy density and gravimetric energy density. However, their applications have been prevented by uncontrollable dendrite growth and large volume expansion during the stripping/plating process. To address this issue, the key strategy is to realize uniform lithium (sodium) deposition during the stripping/plating process. Herein, a thin lithiophilic layer consisting of RuO2 particles anchored on brush‐like 3D carbon cloth (RuO2@CC) is prepared by a simple solution‐based method. After infusion of Li, the RuO2@CC transfers to Li‐Ru@CC. Ru nanoparticles not only play a role in leading Li+ (Na+) to plate on the 3D carbon framework, but also lower local current density because of the good electrical conductivity. Furthermore, density functional theory calculations demonstrate that Ru metal, the reaction product of alkali metal and Ru, can lead Li+ to plate evenly around carbon fiber owing to the strong binding energy with Li+. The Li‐Ru@CC anode shows ultralong cycle life (1500 h at 5 mA cm?2). The full cell of Li‐Ru@CC|LiFePO4 exhibits lower polarization (90% capacity retention after 650 cycles). In addition, sodium metal batteries based on Na‐Ru@CC anodes can achieve similar improvement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号