首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
韩俊  王卫东 《微电子学》2011,41(3):354-358
基于0.18μm标准CMOS工艺,设计并实现了一个单环三阶开关电容∑△调制器.电路采用具有加权前馈求和网络的积分器级联型拓扑结构,采用优化的具有正反馈的单级A类OTA来降低功耗.在设计中,采用电流优化技术来降低运算跨导放大器(OTA)的功耗.∑△调制器的过采样率为128,时钟频率为6.144 MHz,信号带宽为24 k...  相似文献   

2.
杨培  杨华中 《微电子学》2007,37(6):866-869
连续时间Σ-Δ调制器较之传统的开关电容Σ-Δ调制器具有更低的功耗、更小的面积,以及集成抗混叠滤波器等诸多优势。设计了一种应用于低中频GSM接收机的4阶单环单比特结构的连续时间Σ-Δ调制器。在调制器中,采用了开关电容D/A转换器,以降低时钟抖动对性能的影响。仿真结果显示,在1.8 V工作电压2、00 kHz信号带宽、0.18μm CMOS工艺条件下,采样频率21 MHz,动态范围(DR)超过90 dB,功耗不超过2.5 mW。  相似文献   

3.
简要介绍了Σ-Δ调制器的基本原理,设计了一种适合数字音频应用的16位Σ-Δ调制器.该电路采用Chartered 0.5 μm标准CMOS工艺实现,工作电源电压为5 V,在工作频率为6.144 MHz、过采样率为128时,输入带内信噪比可达107 dB.  相似文献   

4.
介绍了一种适用于语音信号处理的16位24 kHzΣ-Δ调制器。该电路采用单环三阶单比特量化形式,利用Matlab优化调制器系数。电路采用SIMC 0.18μm CMOS工艺实现,通过Cadence/Spectre仿真器进行仿真。仿真结果显示,调制器在128倍过采样率时,带内信噪比达到107 dB,满足设计要求。  相似文献   

5.
介绍了Σ-Δ调制器的基本原理,设计了一种适合数字音频应用的16位Σ-Δ调制器。该电路采用Chartered 0.5μm标准CMOS工艺实现,工作电源电压为5V,在工作频率为6.144MHz、过采样率为128时,输入带内信噪比可达107dB。  相似文献   

6.
介绍了低电压开关电容Σ-Δ调制器的实现难点及解决方案,并设计了一种1 V工作电压的Σ-Δ调制器.在0.18 μm CMOS工艺下,该Σ-Δ调制器采样频率为6.25 MHz,过采样比为156,信号带宽为20 kHz;在输入信号为5.149 kHz时,仿真得到Σ-Δ调制器的峰值信号噪声失真比达到102 dB,功耗约为5 mW.  相似文献   

7.
分析并讨论了过采样 Σ- Δ A/D转换器中一阶、二阶及高阶级联结构的 Σ- Δ调制器的性能特点 ,并编写 C语言程序进行行为级仿真 ,用 PSpice进行电路级仿真 ,利用 MATLAB工具对其结果进行分析。结果表明 ,Σ-Δ调制器具有噪声整形特性 ,可以提高基带内的信噪比 ,且三阶级联结构中 1 - 1 - 1结构性能最优。Σ- Δ调制器与过采样技术相结合可构成高精度、低成本的 A/D转换器。  相似文献   

8.
介绍了一种运用于带通Σ-Δ调制器的谐振频率为25MHz的低功耗开关电容DD谐振器电路.电路采用了运算放大器共享技术和双采样技术,同时对单元电路进行优化,达到功耗最小化.该谐振器电路采用SMIC 0.25μm混合信号CMOS工艺进行设计,整个电路模块面积仅为0.09mm2.测试结果表明,使用该谐振器电路的带通Σ-Δ调制器工作于100MHz采样频率时,对于信号带宽为1kHz的输入信号,调制器的输出在谐振频率处SFDR约为77dB.整个谐振器功耗为10.5mW.  相似文献   

9.
周琳  李冬梅  王志华 《微电子学》2005,35(6):639-642
设计了一种适于数字音频应用的18位48 kHz Δ-Σ D/A转换器.其内插滤波器采用时分复用和无需乘法器的设计,降低了硬件开销.Δ-Σ调制器采用5阶单环单比特量化结构,经FPGA平台验证,可实现100 dB的带内信噪比.开关电容(SC)重建滤波器采用CSMC 0.6 μm CMOS工艺实现,核心芯片面积为1.73 mm×1.11 mm,在5 V工作电源下,其功耗小于22 mW.  相似文献   

10.
高阶、高精度是当前Σ-Δ调制器的设计趋势,随着系统结构越来越复杂,带内量化噪声的噪声背景逐渐降低,已不再成为制约调制器精度的主要瓶颈。整个系统的线性失真度对调制器最终精度的影响越来越大,甚至成为决定因素。为提高Σ-Δ调制器的线性度,对运算放大器这一主要非线性源进行了深入的分析,并提出若干优化方案。最后,通过一个三阶单环Σ-Δ调制器结构进行了仿真验证。采用电压放大、AB类输出的运算放大器结构,大大减小了系统功耗。  相似文献   

11.
李卓  罗阳  杨培  杨华中 《微电子学》2007,37(1):49-52
设计了应用于低中频GSM接收机的三阶单环单比特结构Σ-Δ A/D转换器。调制器采用全差分开关电容积分器实现。仿真结果显示,在工作电压为3 V、信号带宽200 kHz、0.35μm CMOS工艺的条件下,过采样率选择为64,信号/噪声失真比(SNDR)达到85 dB,功耗不超过11mW。  相似文献   

12.
为了满足在行为级对Σ-Δ调制器进行完整仿真的需要,提出了在SIMULINK环境下Σ-Δ调制器的噪声模型,包括采样时钟抖动、开关热噪声(kT/C噪声)、运算放大器的有限增益、有限带宽、压摆及饱和电压等非理想因素。在给出具体噪声模型的基础上,构造出二阶Σ-Δ调制器模型。通过仿真,验证了噪声模型的正确性。  相似文献   

13.
提出了一个开关电容Σ-Δ调制器的行为级模型。该模型不仅考虑了通常非理想特性,包括取样的抖动、kT/C噪声、有限带宽、有限摆率、电荷注入,还考虑了对系统性也有很大影响的开关的非零、非线性导通电阻。提出的模型在Simulink中实现,并与Cadence SPICE的电路级仿真进行了比较验证,二者具有较好的一致性。  相似文献   

14.
在简要介绍高阶1位量化Σ-ΔA/D转换器基本原理的基础上,分析了Σ-Δ调制器的噪声特性;介绍了传统线性模型下的噪声传递函数的设计方法。同时,结合实际高阶模拟Σ-Δ调制器的开关电容实现电路,重点对影响调制器性能的非理想因素进行了详细分析,并采用程序建模仿真的方法指导电路设计。与传统设计方法的结果对比表明,文中的方法可以为电路设计提供更加可靠的依据。  相似文献   

15.
设计了一种适于嵌入式FPGA应用的可重构Σ-Δ调制器,并采用高效的流水线结构实现,它能够被设置为3阶或5阶,可支持不同字长(16-/18-/20-/24-位)PCM数据的满幅输入。通过Matlab仿真,针对16位、44.1 kHz、过采样率为128的输入信号,工作在三阶情况下的调制器可以获得超过100 dB的信噪比(SNR);而在输入为24位1、92 kHz、过采样率为32时,工作在5阶情况下的调制器的信噪比(SNR)超过了150 dB,很好地抑制了通带内的噪声。  相似文献   

16.
陈笑  王志功  黎飞 《微电子学》2019,49(3):331-335
基于40 nm CMOS工艺,设计了一种前馈架构的3阶1位量化离散时间Σ-Δ调制器。该调制器的信号带宽为100 kHz,过采样比为128。为了适应低电压环境,输入端开关采用栅压自举结构以提升采样信号的线性度,运算放大器采用两级结构以增加输出摆幅。为了降低系统功耗,比较器采用动态结构实现。仿真结果表明,在1.2 V电源电压下,该调制器的最高信噪比为88.1 dB,功耗为1.5 mW。  相似文献   

17.
对一款适于16位音频A/D转换器的Σ-Δ A/D调制器进行了系统级设计,考虑了影响调制器性能的各种非理想因素,建立了一整套噪声模型,并进行了仿真分析.将仿真结果与未考虑非理想因素的结果进行比较,可以看出,考虑了非理想因素的建模更能预测实际电路的性能,从而更好地为晶体管级电路设计做铺垫.  相似文献   

18.
Σ-Δ模拟/数字转换器综述   总被引:1,自引:1,他引:0  
张媛媛  姜岩峰 《微电子学》2006,36(4):456-460
Σ-ΔA/D转换器是利用速度换取精度的高精度模拟/数字转换器。文章分析了Σ-ΔA/D转换器的产生、组成和优势,重点介绍了Σ-Δ调制器结构及其性能指标,简要介绍了数字抽取滤波器。对Σ-ΔA/D转换器国内外发展状况进行了全面的分析。在此基础上,论述了Σ-ΔA/D转换器未来的发展趋势。  相似文献   

19.
介绍了一个应用于G.712语音编码的16位2 MHz采样率Δ-Σ调制器(SDM),利用Matlab优化调制器系数,并采用全差分开关电容共模反馈两级跨导放大器和动态比较器降低功耗.模拟结果显示:在2 MHz采样时钟下,输入4 kHz语音信号可获得101 dB信噪比输出,相当于16位精度.电路采用0.18 μm CMOS工艺实现,核心面积为340 μm × 160 μm.电路在1.8 V工作电压和2 MHz采样率下,总功耗约165.6 μW.  相似文献   

20.
Σ-Δ型A/D转换器以其独特的优势,广泛应用于转换速率在每秒百千次以下的场景中。其核心Σ-Δ调制器虽然结构简单,但工作原理理解却不易,我们独辟蹊径,从初学者易于理解的角度切入,进行原理阐述,然后回归到实际的结构图,最后给出了Σ-Δ调制器的PSpice仿真验证,解决了初学者理解Σ-Δ型A/D转换器工作原理的难题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号