首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study thickness-shear (TSh) vibration of a rotated Y-cut quartz crystal resonator (QCR) carrying finitesize circular particles that have a rotational degree of freedom and rotatory inertia. The particles are elastically attached to the QCR and are allowed to roll without sliding on the QCR surface. An analytical solution for particle-induced frequency shifts in the QCR is obtained. Examination of the frequency shifts shows that although they can be used to measure geometric/physical properties of the particles, the frequency shifts can have relatively complicated behaviors that cause deviations from the Sauerbrey equation and other anomalies in mass sensing. A frequency-dependent effective particle mass is introduced to classify and characterize different aspects of the particle-induced frequency shifts.  相似文献   

2.
The dynamic equations of a quartz crystal resonator (QCR) vibrating in the thickness-shear modes (TSM) with the upper surface covered by an array of micro-beams, while the micro-beams are immersed in inviscid liquid, is established. A frequency-dependent effective mass ratio is put forward to simulate the effect of surface loadings (micro-beams immersed in liquid) on the dynamic characteristics of QCR. The seeping depth of vibration energy into liquid is analyzed and the added mass of liquid to micro-beams is examined. The induced frequency-shift of the compound QCR system consisting of QCR and the surface loadings is calculated in detail.  相似文献   

3.
Digital force/weight sensors have some advantages over their analog counterparts. This paper describes the optimization and implementation of a novel digital force/weight sensor that uses a thickness-shear quartz crystal resonator (QCR) and a unique compliant mechanism. The compliant mechanism consists of eight flexure hinges and is used to fix the sensitive QCR and transfer the measured force. Advantages of such a sensor include inherent digital output, high resolution, high reliability, and low cost. Due to the complex structure and the multivariables of the compliant mechanism, conventional trial methods are inefficient in determining the dimensions. To solve this problem, an optimization method has been developed by employing rigid-body model, finite element method, and nonlinear programming techniques. Experimental results show that it is more efficient than trial methods in optimizing complex compliant mechanism-based sensors. This method can be used as a generic method for optimizing force sensors using compliant mechanisms, to obtain the desired specifications.  相似文献   

4.
An extended Butterworth-Van Dyke (EBVD) model with frequency-independent parameters for the characterization of a resonant compound formed by a quartz crystal in contact with a finite viscoelastic layer contacting a semi-infinite viscoelastic medium is extracted by analysis of the lumped element model. The formulation of the EBVD model is compared with the complete expression of the electrical admittance of the loaded quartz derived from the transmission line model (TLM). Relative deviations between them do not exceed 3% around 1% bandwidth near resonance. An extended Martin and Granstaff's model and an explicit expression for the frequency shift that supposes an extension of Kanazawa's model for viscoelastic media are obtained. An analysis of the errors associated with the extraction of shear parameters of the coating for different materials prove that, to obtain an error less than 5% in the shear parameters determination, the viscoelastic contribution, defined as the relative error in the thickness computed from the frequency shift by Sauerbrey equation, must be greater than a limit that depends on Q, which is defined as the ratio of the shear storage modulus (G') to shear loss modulus (G"). In the materials studied polymers in the transition range or in the rubbery state with Q=1 and 10, the viscoelastic contribution must be higher than 15% and 50%, respectively, for a 5% limit error in the shear parameters extraction. A criterion for a practical determination of the appropriate viscoelastic regimes is indicated  相似文献   

5.
Quartz crystal impedance around the resonant frequency at 10 MHz of a composite quartz crystal resonator has been studied simultaneously with cyclic voltammetry. A modified quartz crystal with a redox hydrogel (poly(allylamine)-ferrocene cross-linked with glucose oxidase) and immersed in liquid electrolyte was used. Impedance parameters (R(f) and X(L)((f))) of the surface redox gel film were obtained by fitting the resonator transfer function |V(o)/V(i)| vs ω to a BVD equivalent circuit and analyzed with the multiple nonpiezoelectric layer model of Martin. Two limiting hydrogel layers of the same composition were studied while oxidizing and reducing the ferrocene/ferricenium moieties attached to the swollen polymer backbone: thin and thick redox hydrogel films. For the thin films, the Sauerbrey approximation was valid. The mass/thickness and film viscosity changes that resulted from the anion and water exchange were evaluated while redox switching the polymer on the assumption of negligible storage modulus G' and a density of 1. For thick gel layers, on the other hand, the penetration depth of the acoustic wave was far less than the film thickness, and a liquid-like behavior was apparent. Film storage modulus and film loss modulus were simultaneously evaluated with the cyclic voltammetry.  相似文献   

6.
《工程(英文)》2020,6(1):89-99
The fabrication of a separation layer on the inner surface of a hollow fiber (HF) substrate to form an HF composite membrane offers exciting opportunities for industrial applications, although challenges remain. This work reports on the fabrication of a polydimethylsiloxane (PDMS) composite membrane on the inner surface of a single-channel or multi-channel ceramic HF via a proposed coating/cross-flow approach. The nanostructures and transport properties of the PDMS HF composite membranes were optimized by controlling the polymer concentration and coating time. The morphology, surface chemistry, interfacial adhesion, and separation performance of the membranes were characterized by field-emission scanning electron microscope (FE-SEM), attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, the nano-indentation/scratch technique, and pervaporation (PV) recovery of bio-butanol, respectively. The formation mechanism for the deposition of the PDMS layer onto the inner surface of the ceramic HF was studied in detail. The optimized inner surface of the PDMS/ceramic HF composite membranes with a thin and defect-free separation layer exhibited a high flux of ~1800 g·m−2·h−1 and an excellent separation factor of 35–38 for 1 wt% n-butanol/water mixtures at 60 °C. The facile coating/cross-flow methodology proposed here shows great potential for fabricating inner-surface polymer-coated HFs that have broad applications including membranes, adsorbents, composite materials, and more.  相似文献   

7.
Although composites of organic polymers or n‐type small molecule/carbon nanotube (CNT) have achieved significant advances in thermoelectric (TE) applications, p‐type TE composites of small organic molecules as thick surface coating layers on the surfaces of inorganic nanoparticles still remain a great challenge. Taking advantage of in situ oxidation reaction of thieno[3,4‐b]pyrazine (TP) into TP di‐N‐oxide (TPNO) on single‐walled CNT (SWCNT) surface, a novel synthesis strategy is proposed to achieve flexible films of TE composites with narrow‐bandgap (1.19 eV) small molecule coating on SWCNT surface. The TE performance can be effectively enhanced and conveniently tuned by poly(sodium‐p‐styrenesulfonate) content, TPNO/SWCNT mass ratio, and posttreatment by various polar solvents. The maximum of the composite power factor at room temperature is 29.4 ± 1.0 µW m?1 K?2. The work presents a way to achieve flexible films of p‐type small organic molecule/inorganic composites with clear surface coating morphology for TE application.  相似文献   

8.
We describe a method for extracting the model parameters of a high-temperature superconductor (HTSC) film from experimental resonance characteristics of a microstrip resonator. The method is based on a correct phenomenological model of the surface impedance of an HTSC film and the exact calculation of the microstrip resonator characteristics. The procedure of extracting the model parameters from experimental data is realized by using a genetic algorithm. Based on the models described, a special program implementing this mathematical algorithm was written, which allows the HTSC model parameters to be determined from experimental data.  相似文献   

9.
The properties of a laser beam coupled out of a standard unstable laser resonator are heavily dependent on the chosen resonator magnification. A higher magnification results in a higher output coupling and a better beam quality. But in some configurations, an unstable resonator with a low output coupling in combination with a good beam quality is desirable. In order to reduce the output coupling for a particular resonator, magnification fractions of the outcoupled radiation are reflected back into the cavity. In the confocal case, the output mirror consists of a spherical inner section with a high reflectivity and a flat outer section with a partial reflectivity coating. With the application of the unstable resonator with reduced output coupling (URROC), magnification and output coupling can be adjusted independently from each other and it is possible to get a good beam quality and a high power extraction for lasers with a large low gain medium. The feasibility of this resonator design is examined numerically and experimentally with the help of a chemical oxygen iodine laser.  相似文献   

10.
微弧氧化对镁合金摩擦及胶接性能的影响   总被引:2,自引:0,他引:2  
为解决镁合金表面耐摩擦和胶接性能较差的问题,采用微弧氧化法在MB15镁合金原位生长微弧氧化膜层.利用X射线衍射、扫描电镜、摩擦磨损试验机和万能拉伸实验机对膜层的结构组成、表面形貌、摩擦性能和胶接性能进行了研究.结果表明:MB15镁合金表面微弧氧化后可以形成均匀多孔的陶瓷涂层,膜层由MgO和MgAl2O4组成,经微弧氧化...  相似文献   

11.
Abstract

Coating of organic substrates to improve properties has attracted interest because of the potential industrial applications for these materials. Thermal spraying is an attractive coating technology for this purpose owing to its high deposition rate relative to competing processes; however, actual industrial applications remain limited because of poor bonding between the polymeric substrate and the thermal sprayed deposit. Consequently, specific surface preparation of the polymer is required in most cases. In the present study, an innovative surface treatment of a polymeric material allowing subsequent buildup of a plasma sprayed coating is reported. This patented process, known as Pinpro, was successfully applied to coat an organic stereolithography substrate with an AISI 316 stainless steel thick (1 mm) deposit. The process consists in creating a population of surface microcracks in the polymer to provide mechanical anchoring for the steel deposit. Methods of surface preparation were investigated and optimised. The main surface modification mechanisms were elucidated and a phenomenological model of coating buildup on the treated substrate is proposed.  相似文献   

12.
The sensitivity distribution of surface acoustic wave (SAW) resonator sensors is investigated by theoretical and experimental means. It is shown that the sensitivity to mass loading varies strongly across the surface due to the confinement of acoustic energy toward the center of the device. A model is developed for this phenomenon based on the extraction of coupling of modes parameters from a rigorous boundary element method analysis based on a periodic Green's function. As SAW sensors for many applications include a layer covering the electrodes, a new technique is introduced to account for the mechanical interactions with buried electrodes. Using this technique, the sensitivity calculations are found to be in good agreement with measurements. It is also shown that while changes in other parameters influence sensitivity, it is velocity change that most strongly determines overall frequency change  相似文献   

13.
采用热压烧结法成功制备SiC_p/Cu复合材料。采用溶胶-凝胶工艺在SiC颗粒表面制备Mo涂层,研究Mo界面阻挡层对复合材料热物理性能的影响。结果表明:过氧钼酸溶胶-凝胶体系能够在SiC颗粒表面包覆连续性、均匀性较好的MoO_3涂层,最佳工艺配比为SiC∶MoO_3=5∶1(质量比)、过氧化氢∶乙醇=1∶1(体积比),SiC表面丙酮和氢氟酸预清洗处理有利于MoO_3涂层的沉积生长。MoO_3在540℃第一步氢气还原后转变为MoO_2,MoO_2在940℃第二步氢气还原后完全转变为Mo,Mo涂层包覆致密完整。热压烧结SiC_p/Cu复合材料微观组织致密均匀,且相比原始SiC颗粒增强的SiC_p/Cu,经溶胶-凝胶法界面改性处理的SiC_p/Cu复合材料热导率明显提高,SiC体积分数约为50%时,SiC_p/Cu复合材料热导率达到214.16W·m~(-1)·K~(-1)。  相似文献   

14.
A new noninvasive measurement method is presented for simultaneous estimation of the key thermal properties of cylindrical living tissue. This method is based on heating of the surface of a cylinder and measuring surface temperatures at three points on the cylinder. Numerical calculations and theoretical analysis for the corresponding two-dimensional model are carried out. The results have demonstrated the feasibility of the proposed method. The selection, crossover, and mutation operators of a new real-coded genetic algorithm (GA) are designed in this paper to solve the problem of parameter optimization. Then, a set of simulations are performed to verify the effectiveness of the proposed method as well as to optimize the design of the experiments. Finally, a series of experiments is performed to measure the thermal parameters of the human forearm. The experimental results indicate that the obtained parameters, such as the thermal conductivity, blood perfusion, and volumetric heat capacity, are within the range of reference values. The proposed method is easy to implement in practical applications. Paper presented at the Seventeenth European Conference on Thermophysical Properties, September 5–8, 2005, Bratislava, Slovak Republic.  相似文献   

15.
为了制备符合锻模使用性能要求的模膛型面耐热耐磨层,进行了在指定的W6Mo5Cr4V2基体上激光熔覆金属陶瓷Ni60/Ni-Cr-Cr2C2的试验研究。主要研究熔覆材料的成分构成,熔覆时的激光参数及所制备的熔覆层的物相、组织形貌及显微硬度分布。试验结果说明采用50%:50%的Ni60粉和Ni-Cr-Cr3C2粉做覆层材料,采用激光功率1.7Kw,扫描速度4mm/s,光斑直径为3mm,预涂厚度为0.6mm的激光熔覆工艺,可以得到组织细化硬度较高的激光覆层。说明激光熔覆金属陶瓷是制备热锻模膛表面强化层的一种有前途的方法。  相似文献   

16.
The analysis and modeling of SAW resonator devices based on the coupling-of-modes (COM) theory are described, integrating the effect of polymer coating so that the sensor effects can be accounted for in the device transfer function. Based on the perturbation method, the effects of film coating are included in determining the parameters for the model. The COM parameters are, therefore, modified and its simple analytical approaches are presented. The model is validated using the experimental data of a two-port SAW resonator device fabricated on ST-X quartz substrate. The experimental results for a device coated with Parylene C are compared with the simulation results of the proposed model. The comparative results of the electrical characteristics and the frequency sensitivity to film thickness show a good agreement which proves the validity of the model. This analysis and model will provide insight into the influence of the device design parameters on the sensor performance and help in practical design and optimization of SAW-based chemical sensor systems.  相似文献   

17.
LnTiSbxNb1−xO6 (Ln = Ce, Pr) ceramics were prepared by the conventional solid state ceramic route for x = 0, 0.05, 0.1, 0.15, 0.2 and 0.25. The structure of the materials was analyzed using X-ray diffraction techniques. The cell parameters and the theoretical densities of the samples were calculated using least square methods. The samples are sintered to more than 90% of the theoretical density at 1,325–1,350 °C. The microwave dielectric properties were measured using the cavity resonator method. The surface morphology of the sintered sample was analyzed using Scanning Electron Microscopy. All the materials have good microwave dielectric properties and are suitable for dielectric resonator applications.  相似文献   

18.
Integrated optical ring resonators are essential elemental components for integrated optical circuits. An ultrasmall thermo-optical microring resonator with two bus waveguide-configuration based on surface plasmon polariton waveguide is theoretically analyzed. The thermo-optical coefficient, the temperature-dependent amplitude attenuation coefficient and the temperature distribution properties of the waveguide are investigated numerically by finite element method. The critical resonant conditions of the microring resonator are discussed by considering the propagation losses in the plasmonic ring cavity. The transmission characteristics and the tunability of the ring resonator with different structural parameters are investigated. The results show that the proposed ring resonator with a low driving power and high efficient tunability has potential to develop nano-scope wavelength tunable channel drop filters, low power optical switches, attenuators, and other high compact integrated optical devices.  相似文献   

19.
An experimental study of metal strip surface skimming bulk wave (SSBW) resonators using a surface acoustic wave (SAW) design is presented. Characteristics of SSBW and SAW resonators fabricated with the same photolithographic mask are compared and discussed. High Q low-loss SSBW resonators are achieved using a conventional two-port SAW resonator design and taking special care of the distance L between both interdigital transducers, the metal thickness h/lambda (lambda=acoustic wavelength) and the finger-to-gap ratio. Best overall performance of the SSBW devices in this study is achieved at L=nlambda/2-lambda/4 (compared with L=nlambda/2-lambda/8 for SAW resonators), h /lambda=1.6% (compared with 2% for SAW), and finger-to-gap ratio close to 1. The best device fabricated shows an unloaded Q of 5820 and an insertion loss of 7.8 dB at 766 MHz. The SSBW resonant frequency shows a stronger dependence on the metal thickness than the SAW one. This problem, however, is readily solved by frequency trimming using a CF(4) plasma etching technique. SSBW resonator can be trimmed by 0.2% down in frequency (compared with 0.05% for SAW) without affecting their performance.  相似文献   

20.
Material properties of ferroelectric single-domain crystal are temperature dependent. In multi-domain ferroelectric crystal, different domains might contribute in a different way to the effective temperature dependence, due to the crystallographic orientation. Calculations of the effective temperature dependence of the resonant frequency for the piezoelectric resonator were performed for the ferroelectric species , for all possible combinations of domain twins. Temperature dependence is presented for the resonant frequency of the length-extensional vibrations for (0 0 1), (1 1 0) and (1 1 1) BaTiO3 thin bar resonator. Temperature dependence of the resonant frequency for the piezoelectric resonator is suppressed with respect to the single-domain crystal resonator of the same crystallographic orientation. Different twin-domain systems for the same resonator orientation are discussed on the basis of practical applicability for the resonator (orientation, available domain states and external fields to create such twinned system).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号