首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanotubes (CNTs) are one-dimensional nanomaterials with outstanding electrical and thermal conductivities and mechanical properties. Recent advances in CNT manufacturing have made bulk forms such as yarns, tapes and sheets available in commercial quantities to permit the evaluation of these materials for aerospace use. The high tensile properties of CNT composites can be exploited in tension-dominated applications such as composite overwrapped pressure vessels (COPVs). To investigate their utility in this application, aluminum (Al) rings were overwrapped with thermoset/CNT yarn, thermally cured under a vacuum bag, and their mechanical properties measured. Fabrication parameters such as CNT/resin ratio, tension applied during winding, and the number of CNT yarn layers were investigated to determine their effects on the mechanical performance of overwrapped Al rings. Mechanical properties of the CNT composite overwrapped Al rings (CCOARs) were measured under static and cyclic loads at room, elevated, and cryogenic temperatures to evaluate their performance relative to bare Al rings. The ultimate load carried by the composite overwrap in the CCOARs increased with increasing number of wraps. The wet winding process for the CCOAR fabrication improved load transfer compared to the dry winding process due to enhanced interfacial adhesion between the CNT yarn and the applied resin. Wet winding Al rings with CNT yarn/thermoset overwraps resulted in ∼11% increase in weight relative to the bare ring and increased the room temperature breaking load by over 200%.  相似文献   

2.
Macroscopic textile preforms were produced with a multi-level hierarchical carbon nanotube (CNT) structure: nanotubes, bundles, spun single yarns, plied yarns and 3-D braids. In tensile tests, reported in Part I, composites produced from the 3-D braids exhibited unusual mechanical behavior effects. The proposed physical hypotheses explained those effects by molecular level interactions and molecular hindrance of the epoxy chains with individual carbon nanotubes occupying about 40% of the composite volume. Dynamic mechanical analysis was used in this Part II to study the molecular transitions of neat epoxy resin samples and their corresponding CNT yarn composite samples with varying matrix properties. Dramatic effects on the intensity and temperature at which α-transitions occured, were recorded, as well as a marked effect on the smaller segmental motions, or β-transitions. These changes in the matrix assist in explaining the mechanical test data presented in Part I and the proposed physical explanation of those data.  相似文献   

3.
There has been an increasing interest of using natural fibers to replace glass fibers for composite reinforcement nowadays. However, most of the developments have focused on the random discontinuous fiber composite system. In this study, low cost flax continuous yarn was used to make non-crimp fabric for composite reinforcement based on a biaxial weft-knitted structure. A modified flat knitting machine was developed to produce this kind of reinforcement. Both NaOH treated and untreated reinforcements were used for fabricating the composite samples through the vacuum assisted resin transfer molding process (VARTM). The mechanical properties of the flax yarn, reinforcement and composites were tested and the effect of the NaOH treatment was discussed. The results revealed that although the NaOH treatment resulted in the reduction of the mechanical properties of both yarn and reinforcement, the mechanical properties of the composites could be considerably improved by the NaOH treatment of the reinforcement. The study has provided a simpler way of using low cost natural fiber yarns made from flax long-fiber bundles to produce high performance composites.  相似文献   

4.
Carbon nanotube (CNT)-grafted carbon fibers (CFs) have emerged as new reinforcements for improving the mechanical properties of CF-reinforced composites but such enhancement in macroscale composites has not been realized. This paper reports a facile method for preparing CNT-grafted CFs and improving the tensile strength of their composites. A CNT/polyacrylonitrile solution was sprayed onto the surface of the CF woven fabrics, and the CNTs were grafted by a thermal treatment at 300 °C. CNT-grafted CF composites were fabricated using the CNT-grafted CF woven fabrics using a vacuum-assisted resin transfer molding process with epoxy resin. The CNT-grafted CF composite exhibited 22% enhancement in the tensile strength compared to that of the pristine CF composite. Fracture surfaces of the CNT-grafted CF composites showed that the grafted CNTs obstructed the propagation of micro-cracks and micro-delamination around the CFs and also yarn boundaries, resulting in improved tensile strength of CNT-grafted CF composites.  相似文献   

5.
Multiwalled carbon nanotube (MWNT)/poly(vinyl butyral) (PVB) composite nanofibers were prepared by electrospinning, successive twisting and heat treatment. The MWNTs were highly oriented in an electrified thin jet during electrospinning. The heat treatment of the twisted electrospun nanofiber yarns produced the characteristics of the CNT in the composite nanofiber yarns and enhanced their electrical properties, mechanical properties, and thermal properties. The electrical conductivity of the heated yarn was significantly enhanced and showed the maximum value of 154 S cm(-1) for the yarn heated at 400 °C. It is an order of magnitude higher than other electrospun CNT composite materials. These results demonstrated that the novel top-down process based on electrospinning, twisting, and heat treatment provide a promising option for simple and large-scale manufacture of CNT assemblies.  相似文献   

6.
This paper primarily investigates the fabrication process of long-fibre reinforced unidirectional thermoplastic composites made using jute yarns (both untreated and treated). Tubular braiding technique was used to produce an intermediate material called “microbraid yarn” (MBY) with jute yarn as the straightly inserted axial reinforcement fibre and polymer matrix fibre being braided around the reinforcing jute yarns. Microbraid yarns were then wound in a parallel configuration onto a metallic frame and compression molded to fabricate unidirectional composite specimens. In this study, two types of polymeric materials (biodegradable poly(lactic) acid and non-biodegradable homo-polypropylene) were used as matrix fibres. Basic static mechanical properties were evaluated from tensile and 3 point bending tests. Test results were analyzed to investigate the effects of molding temperature and pressure on the mechanical and interfacial behaviour. For the unidirectional jute fibre/poly(lactic) acid (PLA) composites, the results indicated that the molding condition at 175 °C and 2.7 MPa pressure was more suitable to obtain optimized properties. Improved wettability due to proper matrix fusion facilitated thorough impregnation, which contributed positively to the fibre/matrix interfacial interactions leading to effective stress transfer from matrix to fibre and improved reinforcing effects of jute yarns. For the jute/PP unidirectional composites, specimens with only 20% of jute fibre content have shown remarkable improvement in tensile and bending properties when compared to those of the virgin PP specimens. The improvements in the mechanical properties are broadly related to various factors, such as the wettability of resin melts into fibre bundles, interfacial adhesion, orientation and uniform distribution of matrix-fibres and the lack of fibre attrition and attenuation during tubular braiding process.  相似文献   

7.
This paper describes the mechanical properties and water absorption characteristics for biocomposites made from woven PLA/hemp/Lyocell prepregs. The aim was to improve the properties with the addition of Lyocell fibre into a hybrid yarn. Well-aligned hybrid yarns composed of hemp/PLA, hemp–Lyocell/PLA, respective, Lyocell/PLA were made by wrap spinning. Unidirectional satin fabrics were made by weaving with PLA (warp) and the hybrid yarns (weft). Uniaxial composites were fabricated with 30 fibre mass% using compression moulding. The composites were investigated for tensile, flexural and impact properties. Combining hemp with Lyocell in a PLA matrix improves the mechanical properties, compared to hemp/PLA composites. The composite made from the satin Lyocell/PLA fabric gave the best mechanical properties. The type of fibre reinforcement compositions did not significantly affect the water absorption of the biocomposites. Scanning electron microscopy showed that fibre pull-outs appear more often in hemp/PLA composites than in composites also including Lyocell fibre.  相似文献   

8.
Multifunctional metal composite yarns made of crisscross-section polyester (CSP), antibacterial nylon (AN), and stainless steel wires (SSW) were manufactured using a hollow spindle spinning machine. The core yarn, the inner wrapped yarn, and the outer wrapped yarns were SSW, AN, and CSP, respectively. Process parameters such as wrapping material content obviously influenced the tenacity, elongation, and surface morphology properties of the manufactured multifunctional metal composite yarns. These yarns were then woven into fabrics using a rapier loom. Woven fabric WC-8 was evaluated in terms of its mechanical properties, antibacterial activity, and electromagnetic shielding effectiveness (EMSE). Results showed that the use of SSW and AN in the metal composite yarns improved the antibacterial and EMSE of the woven fabric. Thus, these metal composite woven fabrics can be used in manufacturing personal protective clothing to protect humans from electromagnetic radiation and bacterial cross-infection.  相似文献   

9.
10.
In this study, the manufacturing of core-sheath hybrid yarns consisting of steel fibres and glass filament yarn (GFY) using a friction spinning technique and their usability for failure prediction in composites is reported. With the DREF-2000 friction spinning technique, it is possible to manufacture hybrid yarns having a core-sheath structure. Steel fibres are used as the sheath and the GFY is used as the core of the yarns. These hybrid yarns are embedded between two layers of glass/polypropylene (GF/PP)-based knitted fabric composites. By varying the steel fibre content, it is possible to adjust the initial resistance as well as the sensitivity of the hybrid yarns to measure the interphase strain in the thermoplastic-based knit composite during tensile loading. The hybrid yarns with lower steel fibre content are found to be more sensitive in the prediction of the early damage in the composite. By performing a quasi-static and gradual increase of loading during the tensile tests, it is possible to identify the critical load for the composite. The before mentioned hybrid yarns show their suitability for the structural health monitoring and the potential to be integrated into thermoplastic-based composites by textile processing.  相似文献   

11.
Comingled carbon fibre (CF)/polypropylene (PP) yarns were produced from chopped recycled carbon fibres (reCF) (20 mm in length, 7-8 μm diameter) blended with matrix polypropylene staple fibres (60 mm in length, 28 μm diameter) using a modified carding and wrap spinning process. Microscopic analysis showed that more than 90% of the reCF were aligned along the yarn axis. Thermoplastic composite test specimens fabricated from the wrap-spun yarns had 15-27.7% reCF volume content. Similar to the yarn, greater than 90% of the reCF comprising each composite sample made, showed a parallel alignment with the axis of the test specimens. The average values obtained for tensile, and flexural strengths were 160 MPa and 154 MPa, respectively for composite specimens containing 27.7% reCF by volume. It was concluded that with such mechanical properties, thermoplastic composites made from recycled CF could be used as low cost materials for many non-structural applications.  相似文献   

12.
Rotary braiding is a cost effective method to manufacture near net shaped preforms that generally have a closed section and may have an arbitrary shape if braiding is performed over a shaped mandrel. The reinforcement architecture can be varied by the number and spacing of active bobbins, and by the speeds used to ‘take-up’ the braid and move the circumferential bobbins. Analytical methods are available that can reliably predict yarn paths and the final braid meso-structure for simple regular sections, and further analytical methods have been proposed to estimate composite braid elastic mechanical properties. A full simulation chain using the explicit Finite Element (FE) technique is presented for composite braid manufacture and mechanical stiffness prediction of the final composite. First simulation of the braiding process provides detailed information on yarns paths and braid meso-structure, from which Representative Volume Elements (RVE) of the braid may be constructed for analysis of stiffness properties. The techniques are general and can be applied to any braid geometry. A specific problem of meshing the yarn structure and interspersed resin volumes is overcome using conventional solid elements for the yarns and Smooth Particle Hydrodynamics for the resin, with link element to join the two constituents. Details of the background theory, braid simulation methods, meso- model analysis and validation again analytical and test measurements are presented.  相似文献   

13.
Developing commingled yarn technologies and understanding the fundamental interface nanostructures of reinforcement and thermoplastic filaments are of significant current interest. Previous research on commingled yarns was mainly focused on the air-jet texturing process, while the mechanical properties of the composites are strongly influenced by the impregnation homogeneity, the polymer sizing properties and consolidation process. Here, we report a unique melt spinning equipment for E-glass fiber which is compatibly combined with a melt spinning extruder to manufacture commingled yarns. The in-situ commingling enables to combine homogeneously both glass and polypropylene filament arrays in one processing step and without fiber damage compared to commingling by air texturing. Variation of processing conditions are investigated, i.e. sizings, diameter ratios, and arrangements of sizing/finish application related to intermingling of filament arrays. A rapid processing is achieved because of good intermingling and the low flow paths. We found that the sizing enables a good strand integrity with the polypropylene yarn. The interfacial adhesion can be improved with a sizing for glass fibers consisting of aminosilane and maleic anhydride grafted polypropylene film former, which results in both improved transverse tensile strength and compression shear strength. We also found that a very small amount of single-wall carbon nanotubes (SWNTs) in the sizing provides significantly improved interfacial adhesion strength. This is attributed to the change in fracture behavior of the nano-structured interface and morphology of the model single-fiber composites.  相似文献   

14.
This work presents the use of carbon nanotube (CNT) skeletons and the resin infusion process as a path towards the production of polymer composites with high and well dispersed nanotube content. A general purpose low viscosity epoxy resin was used as matrix in the reported process assessment. Thin CNT papers, called skeletons, were initially produced to obtain CNT networks. The impregnation was made by infiltrating the non-diluted resin through the carbon nanotube structure. The results show the proposed processing approach as one capable of producing well dispersed nanocomposites with high CNT loading (more than 15 wt% CNT by composite weight), which are important for developing high performance structures based on carbon nanotubes with good thermal and electrical conductivity. The absolute mechanical performance was lower than expected, and discussed in light of manufacturing problems detected by microscopy observations under scanning electron microscopy (SEM).  相似文献   

15.
A carbon nanotube (CNT) fiber is formed by assembling millions of individual tubes. The assembly feature provides the fiber with rich interface structures and thus various ways of energy dissipation, as reflected by the nonzero loss tangent (>0.028–0.045) at low vibration frequencies. A fiber containing entangled CNTs possesses higher loss tangents than a fiber spun from aligned CNTs. Liquid densification and polymer infiltration, the two common ways to increase the interfacial friction and thus the fiber's tensile strength and modulus, are found to efficiently reduce the damping coefficient. This is because the sliding tendency between CNT bundles can also be well suppressed by a high packing density and the formation of covalent polymer cross‐links within the fiber. The CNT/bismaleimide composite fiber exhibits the smallest loss tangent, nearly the same as that of carbon fibers. At a higher level of the assembly structure, namely a multi‐ply CNT yarn, the interfiber friction and sliding tendency obviously influence the yarn's damping performance, and the loss tangent can be tuned within a wide range, similar to carbon fibers, nylon yarns, or cotton yarns. The wide‐range tunable dynamic properties allow new applications ranging from high quality factor materials to dissipative systems.  相似文献   

16.
碳纳米管(CNT)优异的力学性能使其成为复合材料优选的增强体。CNT/聚合物复合材料的力学性能主要受其界面结合性能的影响。综述了CNT/聚合物复合材料界面结合性能的研究方法和研究现状。对CNT/聚合物复合材料界面结合性能的研究,实验上采用微观表征技术、拉曼光谱分析技术和纳米力学拔出法,分子模拟方法则是通过对CNT施加位移或外力模拟CNT从聚合物基体中的抽拔过程。概述了聚合物的类型、晶态结构以及CNT的手性、功能化处理等因素对CNT/聚合物复合材料界面结合性能的影响,并展望了CNT/聚合物复合材料界面结合性能未来研究的重点方向。  相似文献   

17.
Jute yarn-Biopol® composites are prepared by hot-press moulding technique. Jute yarns of two varieties (7.36 lbs/spy and 11.86 lbs/spy) are used for composite fabrications. Effects of temperature, yarn amount, chemical modification like dewaxing (defatting), alkali treatment, graft copolymerization and orientation of yarn winding on the performance of resulting composites have been investigated. The mechanical properties like tensile strength, bending strength, impact strength and bending-E-modulus increased substantially in comparison to pure Biopol® as a result of reinforcement with jute yarns. The most remarkable observations of our present investigations include more than 150% enhancement in tensile strength, impact strength, bending-E-modulus and more than 50% enhancement in bending strength of the resulting composites as compared to pure Biopol® sheets. Amount of jute yarn, chemical modifications and measurement of mechanical properties on the direction of winding of yarns contribute significantly to the mechanical properties of resulting composites.  相似文献   

18.
This study examined the mechanical properties of aligned multi-walled carbon nanotube (CNT)/epoxy composites processed using a hot-melt prepreg method. Vertically aligned ultra-long CNT arrays (forest) were synthesized using chemical vapor deposition, and were converted to horizontally aligned CNT sheets by pulling them out. An aligned CNT/epoxy prepreg was fabricated using hot-melting with B-stage cured epoxy resin film. The resin content in prepreg was well controlled. The prepreg sheets showed good drapability and tackiness. Composite film specimens of 24-33 μm thickness were produced, and tensile tests were conducted to evaluate the mechanical properties. The resultant composites exhibit higher Young’s modulus and tensile strength than those of composites produced using conventional CNT/epoxy mixing methods. For example, the maximum elastic modulus and ultimate tensile strength (UTS) of a CNT (21.4 vol.%)/epoxy composite were 50.6 GPa and 183 MPa. These values were, respectively, 19 and 2.9 times those of the epoxy resin.  相似文献   

19.
In the present research, soy protein concentrate (SPC) was modified using glutaraldehyde (GA) and polyvinyl alcohol (PVA). The modified resin allowed to process soy protein polymer without any plasticizer. The modified resin also showed increased tensile properties, improved thermal stability and reduced moisture resistance as compared to SPC resin. Besides the tensile and thermal properties, modified SPC resin was also characterized for its dynamic mechanical properties. Unidirectional composites were fabricated using modified SPC and flax yarn. Composite specimens, approximately 1 mm thick, were prepared in both longitudinal and transverse directions. The composite specimens were characterized for their tensile and flexural properties. The fracture surface of the composite was also analyzed in both longitudinal and transverse directions. These composite specimens exhibited a fracture stress of 126 MPa and 2.24 GPa, respectively, in the longitudinal directions. The composite properties were also predicted using the rule of mixture in longitudinal direction. It was observed that the experimental values are lower than the predicted values for a variety of reasons.  相似文献   

20.
This paper presents a finite element model for predicting the mechanical behavior of polypropylene (PP) composites reinforced with carbon nanotubes (CNTs) at large deformation scale. Existing numerical models cannot predict composite behavior at large strains due to using simplified material properties and inefficient interfaces between CNT and polymer. In this work, nonlinear representative volume elements (RVE) of composite are prepared. These RVEs consist of CNT, PP matrix and non-bonded interface. The nonlinear material properties for CNT and polymer are adopted to solid elements. For the first time, the interface between CNT and matrix is simulated using contact elements. This interfacial model is capable enough to simulate wide range of interactions between CNT and polymer in large strains. The influence of adding CNT with different aspect ratio into PP is studied. The mechanical behavior of composites with different interfacial shear strength (ISS) is discussed. The success of this new model was verified by comparing the simulation results for RVEs with conducted experimental results. The results shows that the length of CNT and ISS values significantly affect the reinforcement phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号