首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lattice-matched Ga0.47ln0.53As/InP heterostructure was grown by atmosphericpressure metalorganic vapor phase epitaxy reaction system using monovalent cyclopentadienyl indium. The lattice-matched heterostructure showed electron mobilities ofμ300K= 12700 cm2/Vs at n8= 4.2 x 1011 cm-2 and μ77K= 108000 cm2/Vs at n8 = 3.9 x 1011 cm-2. The uniformity in electrical properties was measured by Hall element array with 400 μm pitch. Coefficient of variation in electron mobility was 0.18%.  相似文献   

2.
We have successfully grown bulk In0.53Ga0.47As on InP using tertiarybutylarsine (TBA), trimethylindium and trimethylgallium. The growth temperature was 602° and the V/III ratio ranged from 19 to 38. Net carrier concentrations were 2 – 4 × 1015 cm-3, n-type, with a peak 77 K mobility of 68,000 cm2/V. sec. Increasing compensation was observed in In0.53Ga0.47As grown at higher V/III ratios. PL spectra taken at 5 K revealed strong near bandgap emission at 0.81 eV—with the best sample having a FWHM of 2.5 meV. At lower energies, donor-acceptor pair transitions were evident. Strong and sharp 5 K PL emission was observed from InP/In0.53Ga0.47As/InP quantum wells grown with TBA.  相似文献   

3.
We report on the electrical and microstructural properties of InP/GaxIn 1 -xAs/Al0.48In0.52As modulation doped layers having compositionally graded active channels with different channel thicknesses. The layers were grown by solid source molecular beam epitaxy on Fe-doped InP substrates. The undoped GaInAs two dimensional electron gas channel layers were grown having indium compositions graded fromx = 0.53 at the substrate buffer tox= 0.65 at the heterointerface by varying the Ga cell temperature during growth. Active channel thicknesses of 20 nm and 30 nm were compared with lattice matched layers. Transmission electron microscope image analysis indicates no misfit dislocations in these structures. Hall-effect measurements at 300 K show an increase in the mobility from 8,380 cm2/Vs for the lattice matched layer to 12,500 cm2/Vs for the 30 nm pseudomorphic layer. Small gate-length, 0.25 μn, MODFETs were fabricated to determine effective velocity values from transconductance (g m ) and current gain (h 21 ) measurements. The peak dc extrinsicg m increased from 367 mS/mm for the lattice matched layer to 668 mS/mm for the 30 nm pseudomorphic layer. The effective electron carrier velocity increased from 1.57 × 107 cm/s for the lattice matched layer to 1.88 × 107 cm/s for the 30 nm pseudomorphic layer. Our results show that compositional grading is a useful technique to obtain thick pseudomorphic layers with good transport properties.  相似文献   

4.
We have investigated, as a function of indium content x, the galvanomagnetic and Shubnikov de Haas (SdH) properties of two-dimensional electron gases (2DEG) formed at lattice matched, strain relaxed InAlAs/InGaAs heterojunctions. These were grown by molecular beam epitaxy on GaAs misoriented substrates with a two degree offcut toward the nearest (110) plane. Variable temperature resistivity and Hall measurements indicate an increase in the electron sheet density ns from 0.78×1012cm−2 for x=0.15 to 1.80×1012 cm−2 for x=0.40 at 300K, and from 0.75×1012cm−2 to 1.67×1012cm−2 at T=1.6K. The room temperature electron mobility, measured along the in plane [110], direction is independent of indium content and equals approximately 9500 cm2/Vs. For T<50K, the mobility is independent of temperature decreasing with increasing x from 82000 cm2/Vs for x=0.15 to 33000 cm2/Vs for x=0.40. The ratios (τtq) at 1.6K between the electron relaxation time τt and the single particle relaxation time τq, for the strain relaxed specimens, as well as for pseudomorphically strained Al0.35Ga0.65As/In0.15Ga0.85As structures grown on GaAs substrates, and In0.52Al0.48As/In0.53Ga0.47As heterostructures grown lattice matched on InP substrates. Such a study indicates the presence of inhomogeneities in the 2DEGs of the strain relaxed specimens which appear to be related to the process of strain relaxation. Such inhomogeneities, however, have little effect on the electron relaxation time τt which, at low temperatures, is limited principally by alloy scattering.  相似文献   

5.
Effectively atomically flat interfaces over a macroscopic area (“(411)A super-flat interfaces”) were successfully achieved in In0.53Ga0.47As/In0.52Al0.48As quantum wells (QWs) grown on (411)A InP substrates by molecular beam epitaxy (MBE) at a substrate temperature of 570°C and V/III=6. Surface morphology of the In0.53Ga0.47As/In0.52Al0.48As QWs was smooth and featureless, while a rough surface of those simultaneously grown on a (100) InP substrate was observed. Photoluminescence (PL) linewidths at 4.2 K from the (411)A QWs with well width of 0.6–12 nm were 20–30 % narrower than those grown on a (100) InP substrate and also they are almost as narrow as each of split PL peaks for those of growth-interrupted QWs on a (100) InP substrate. In the case of the (411)A QWs, only one PL peak with very narrow linewidth was observed from each QW over a large distance (7 mm) on a wafer.  相似文献   

6.
Tertiarybutylarsine (TBA) and teriarybutylphosphine (TBP) are liquid organometallic sources that are a safer alternative to arsine and phosphine. In this work, we have grown high-quality In0.53Ga0.47As/InP quantum wells at a temperature of 590° with TBA and TBP partial pressures of 0.4 and 2.5 Torr, respectively. A low-temperature photoluminescence study indicated optimized column V growth interruption times of 0.5 s for In0.53Ga0.47As wells with InP barriers. Using the optimized growth conditions, we have obtained lattice matched In0.53Ga0.47As/InxGa1-xAsyP1-x single quantum-well lasers emitting at 1.55 μm. Broad-area devices with a length of 3.5 mm exhibit a low threshold current density of 220A/cm2. Broad-area lasers containing four quantum wells had a threshold current density of 300A/cm2 for a 3.0 mm cavity length and CW powers of 40 mW per facet for an as-cleaved 4 × 750 μm device.  相似文献   

7.
It has been demonstrated that a highly doped (Si:3 × 1019 cm-3) triple capping layer consisting of n+−In0.53Ga0.47As, n+−In0.52Al0.48As, and n+-In0.53Ga0.47As can remarkably reduce the parasitic source resistance in InP-based high electron mobility transistors (HEMTs). The analysis of the source resistance revealed that the resistance element at the n+−In0.53Ga0.47As/un−In0.52Al0.48As/un-In0.53Ga0.47As channel heterointerfaces was as large as 70% of the source resis-tance when nonalloyed ohmic electrodes were used. The highly doped triple capping layer reduces the resistance contribution of vertical conduction between the capping layer and 2DEG channel. A low source resistance of 0.57 Ωmm and a low contact resistivity of 3 × 10−5 Ωcm2 were obtained for the HEMTs with the highly doped triple capping layer, which were 60% lower and one order of magnitude smaller than those for the HEMTs with a conventional single capping layer doped 5 × 1018 cm−3, respectively. These values were also 70 and 30% lower than those for the HEMTs with a highly doped (3 × 1019 cm−3) single capping layer, respectively. The low source resistance brings high peak extrinsic transconduc-tance of 1 S/mm for a device with 0.4 μm long gate, which was 42% higher than the previously reported HEMTs with the same gate length.  相似文献   

8.
A number of factors contribute to the high n-type background carrier concentration (high 1015 to low 1016 cm−3) measured in MBE Ga0.47In0.53As lattice-matched to InP. The results of this study indicate that the outdiffusion of impurities from InP substrates into GalnAs epitaxial layers can account for as much as two-thirds of the background carrier concentration and can reduce mobilities by as much as 40%. These impurities and/or defects can be gettered at the surfaces of the InP by heat treatment and then removed by polishing. The GalnAs epitaxial layers grown on the heat-treated substrates have significantly improved electrical properties. Hall and SIMS measurements indicate that both donors and acceptors outdiffuse into the epitaxial layers during growth resulting in heavily compensated layers with reduced mobilities. The dominant donor species was identified by SIMS as Si, and the dominant acceptors as Fe, Cr and Mn.  相似文献   

9.
Zinc diffusion in InAsP/InGaAs heterostructures   总被引:1,自引:0,他引:1  
A systematic study of the sealed ampoule diffusion of zinc into epitaxially grown InP, In0.53Ga0.47As, In0.70Ga0.30As, In0.82Ga0.18As, and through the InAsP/InGaAs interface is presented. Diffusion depths were measured using cleave-and-stain techniques, electrochemical profiling, and secondary ion mass spectroscopy. The diffusion coefficients, , were derived. For InP, D0=4.82 × 10−2cm2/sec and Ea=1.63 eV and for In0.53Ga0.47As, D0=2.02 × 104cm2/sec and Ea=2.63 eV. Diffusion into the heteroepitaxial structures used in the fabrication of planar PIN photodiodes is dominated by the effects of the InP/InGaAs interface.  相似文献   

10.
Carbon dopedp-type GaAs and In0.53Ga0.47As epitaxial layers have been grown by low-pressure metalorganic chemical vapor deposition using CC14 as the carbon source. Low-temperature post-growth annealing resulted in a significant increase in the hole concentration for both GaAs and In0.53Ga0.47As, especially at high doping levels. The most heavily doped GaAs sample had a hole concentration of 3.6 × 1020 cm−3 after a 5 minute anneal at ≈400° C in N2, while the hole concentration in In0.53Ga0.47As reached 1.6 × 1019 cm−3 after annealing. This annealing behavior is attributed to hydrogen passivation of carbon acceptors. Post-growth cool-down in an AsH3/H2 ambient was found to be the most important factor affecting the degree of passivation for single, uncapped GaAs layers. No evidence of passivation is observed in the base region of InGaP/GaAs HBTs grown at ≈625° C. The effect ofn-type cap layers and cool-down sequence on passivation of C-doped InGaAs grown at ≈525° C shows that hydrogen can come from AsH3, PH3, or H2, and can be incorporated during growth and during the post-growth cool-down. In the case of InP/InGaAs HBTs, significant passivation was found to occur in the C-doped base region.  相似文献   

11.
The experimental characterization of single barrier heterostructure thermionic cooling devices at cryogenic temperatures is reported. The device studied was a cylindrical InGaAs microrefrigerator, in which the active layer was a 1 μm thick In0.527Al0.218Ga0.255As heterostructure barrier with n-type doping concentration of 6.68 × 1016 cm−3 and an In0.53Ga0.47As emitter/collector of 5 × 1018 cm−3 n-doping. A full field thermoreflectance imaging technique was used to measure the distribution of temperature change on the device’s top surface when different current excitation values were applied. By reversing the current direction, we studied the device’s behavior in both cooling and heating regimes. At an ambient temperature of 100 K, a maximum cooling of 0.6 K was measured. This value was approximately one-third of the measured maximum cooling value at room temperature (1.8 K). The paper describes the device’s structure and the first reported thermal imaging at cryogenic temperatures using the thermoreflectance technique.  相似文献   

12.
The low pressure metalorganic chemical vapor deposition epitaxial growth and characterization of InP, Ga0.47In0.53 As and GaxIn1-xAsyP1-y, lattice-matched to InP substrate are described. The layers were found to have the same etch pit density (EPD) as the substrate. The best mobility obtained for InP was 5300 cm2 V−1S−1 at 300 K and 58 900 cm2 V−1 S−1 at 772K, and for GaInAs was 11900 cm2 V−1 S−1 at 300 K, 54 600 cm2 V−1 S−1 at 77 K and 90 000 cm V−1S−1 at 2°K. We report the first successful growth of a GaInAs-InP superlattice and the enhanced mobility of a two dimensional electron gas at a GaInAs -InP heterojunction grown by LP-MO CVD. LP MO CVD material has been used for GaInAsPInP, DH lasers emitting at 1.3 um and 1.5 um. These devices exhibit a low threshold current, a slightly higher than liquid phase epitaxy devices and a high differential quantum efficiency of 60%. Fundamental transverse mode oscillation has been achieved up to a power outpout of 10 mW. Threshold currents as low as 200 mA dc have been measured for devices with a stripe width of 9 um and a cavity length of 300 um for emission at 1.5 um. Values of T in the range 64–80 C have been obtained. Preliminary life testing has been carried out at room temperature on a few laser diodes (λ = 1.5μm). Operation at constant current for severalthousand hours has been achieved with no change in the threshold current.  相似文献   

13.
The development of two metallizations based on the solid-phase regrowth principle is presented, namely Pd/Sb(Zn) and Pd/Ge(Zn) on moderately doped In0.53Ga0.47As (p=4×1018 cm−3). Contact resistivities of 2–3×10−7 and 6–7×10−7 Ωcm2, respectively, have been achieved, where both systems exhibit an effective contact reaction depth of zero and a Zn diffusion depth below 50 nm. Exhibiting resistivities equivalent to the lowest values of Au-based systems in this doping range, especially Pd/Sb(Zn) contacts are superior to them concerning metallurgical stability and contact penetration. Both metallizations have been successfully applied for contacting the base layer of InP/In0.53Ga0.47As heterojunction bipolar transistors.  相似文献   

14.
In0.52Al0.48As/In0.53Ga0.47As heterojunction bipolar transistors (HBTs) were grown metamorphically on GaAs substrates by molecular beam epitaxy. In these growths, InAlAs, AlGaAsSb, and InP metamorphic buffer layers were investigated. The InAlAs and AlGaAsSb buffer layers had linear compositional grading while the InP buffer layer used direct binary deposition. The transistors grown on these three layers showed similar characteristics. Bulk thermal conductivities of 10.5, 8.4, and 16.1 W/m K were measured for the InAlAs, AlGaAsSb, and InP buffer layers, as compared to the 69 W/m K bulk thermal conductivity of bulk InP. Calculations of the resulting HBT junction temperature strongly suggest that InP metamorphic buffer layers should be employed for metamorphic HBTs operating at high power densities.  相似文献   

15.
Ga0.47In0.53As epitaxial layers on InP substrate have been subjected to proton bombardment. The resistivity increases up to 104Ω cm for 1014H+/cm2 in p-type and 3 · 1016H+/cm2 in n-type a0.47In0.53As implanted at 77 K. Proton bombardment at 300 K showed this increase in resistivity only for p-type material. Channeling experiments indicated that the damage of the lattice which seems to be responsible for the resistivity increase of n-material can be produced only at low temperature with doses of the order of 1016H+/cm2. Crystalline layers implanted with high dose showed blistering effects after heat treatments.  相似文献   

16.
High quality InP and Ga1-x InxAs layers have been grown on InP substrates using MOVPE growth at atmospheric pressure. Excellent material quality has been obtained using triethylindium and trimethylgallium sources(n = 1.7 1014 cm-3, μ = 106 000 cm2V-1s-1 at 77 K for InP andn = 1 ? 3 1015 cm-3, μ= 75 000 cm2V-1 s-1 at 77 K for Ga1-xInxAs). The InP/Ga1-xInxAs interface width obtained is very small (10 Å). The first PIN diodes grown by the process exhibit excellent characteristics.  相似文献   

17.
《Solid-state electronics》2006,50(7-8):1175-1177
In0.75Ga0.25As channel layers with a record mobility exceeding 12,000 cm2/Vs for use in high-κ dielectric NMOSFETs have been fabricated. The device structures which have been grown by molecular beam epitaxy on 3″ semi-insulating InP substrate comprise a 10 nm strained In0.75Ga0.25As channel layer and a high-κ oxide based dielectric layer (κ  20). Electron mobilities of 12,033 and 7,042 cm2/Vs have been measured for sheet carrier concentrations ns of 2.5 × 1012 and 6 × 1012 cm−2, respectively.  相似文献   

18.
High quality epitaxial layers of InxGa1−xAs (x = 0.53) were grown on semi-insulating (Fe-doped) (100) InP sub-strates. The layers were grown at a constant furnace temperature of 640°C by passing a direct electric current (0–10A/cm2) from the substrate to the melt. In order to minimize the out-diffusion of Fe atoms from the bulk of the substrate during the melt saturation, the substrate was kept at a cold temperature region (340°C) within the growth chamber and remotely loaded in the graphite boat just prior to the initiation of the growth cycle. In addition to pre-venting the out-diffusion of Fe atoms, this procedure sub-stantially reduced the thermal degradation of the InP sub-strate surface. The above technique produced high quality layers having uniform thickness and good surface morphology. A study of the dependence of growth rate on the applied current density yielded an average growth rate of 0.06μm/ A-min. Room temperature Hall measurements on layers grown by CCLPE resulted in Hall mobilities μ300 = 8900cm2/V-sec at a carrier concentration of 6.2 × l016cm−3. The improve-ment in the mobility achieved by the CCLPE technique is attributed to a reduced out-diffusion of scattering centers from the substrate into the growth layer, as well as to the higher quality of epitaxial layers normally achieved by CCLPE.  相似文献   

19.
We report the organometallic vapor phase epitaxial (OMVPE) growth of InP and Ga0.47In0.53As using a new organometallic indium source, ethyldimethylindium (EDMIn), rather than the traditional sources triethylindium (TEIn) or trimethylindium (TMIn). EDMIn is a liquid at room temperature and its vapor pressure at 17° C was found to be 0.85 Torr using thermal decomposition experiments. The growth results using EDMIn were compared to those using TMIn in the same atmospheric pressure reactor. For InP, use of EDMIn resulted in a high growth efficiency of 1.3 × 104 μm/ mole, which was independent of the growth temperature and comparable to the growth efficiency obtained with TMIn. The high growth efficiency is consistent with the observation of no visible parasitic gas phase reactions upstream of the substrate. The 4K photoluminescence (PL) spectra consist of a peak due to bound excitons and an impurity related peak 38 meV lower in energy. This impurity peak is ascribed to conduction band to acceptor transitions from carbon, due to the decreasing relative intensity of this peak with increasing V/III ratio. The relative intensity of the C impurity peak decreases by five times when the growth temperature is increased from 575 to 675° C, with a corresponding increase in the room temperature electron mobility from 725 to 3875 cm2/ Vs. For GalnAs lattice-matched to InP, use of EDMIn also resulted in a temperatureindependent high growth efficiency of 1.0 x 104 μm/mole, indicating negligible parasitic reactions with AsH3. The In distribution coefficient was nearly constant at a value of 0.9, however the run to run composition variation was slightly higher for EDMIn than for TMIn. The 4K PL showed donor-acceptor pair transitions due to C and Zn. The C impurity peak intensity decreased dramatically with increasing growth temperature, accompanied by an increase in the room temperature electron mobility to 5200 cm2/Vs. Overall, the growth of both InP and GalnAs using EDMIn was qualitatively similar to that using TMIn, although the room temperature electron mobilities were lower for the new source than for our highest purity bottle of TMIn.  相似文献   

20.
Ga47In53As films have been grown by molecular beam epitaxy (MBE) on InP substrates. The unintentionally doped material has a free electron concentration of 8 × 1015cm-3 and exhibits sharp (~5 meV linewidth) exciton recombination in the 4K photoluminescence. The films were grown on (100) InP surfaces which were thermally cleaned in the arsenic beam. The effects of the substrate temperature during growth, the Ga to In flux ratio and the group V to group III flux ratio on the 4K photoluminescence are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号