首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Effectively atomically flat interfaces over a macroscopic area (“(411)A super-flat interfaces”) were successfully achieved in In0.53Ga0.47As/In0.52Al0.48As quantum wells (QWs) grown on (411)A InP substrates by molecular beam epitaxy (MBE) at a substrate temperature of 570°C and V/III=6. Surface morphology of the In0.53Ga0.47As/In0.52Al0.48As QWs was smooth and featureless, while a rough surface of those simultaneously grown on a (100) InP substrate was observed. Photoluminescence (PL) linewidths at 4.2 K from the (411)A QWs with well width of 0.6–12 nm were 20–30 % narrower than those grown on a (100) InP substrate and also they are almost as narrow as each of split PL peaks for those of growth-interrupted QWs on a (100) InP substrate. In the case of the (411)A QWs, only one PL peak with very narrow linewidth was observed from each QW over a large distance (7 mm) on a wafer.  相似文献   

2.
Low-temperature (LT) growth of In0.47Ga0.53P was carried out in the temperature range from 200 to 260°C by gas source molecular beam epitaxy using solid Ga and In and precracked PH3. The Hall measurements of the as-grown film showed a resistivity of ∼106 Ω-cm at room temperature whereas the annealed film (at 600°C for 1 h) had at least three orders of magnitude higher resistivity. The Hall measurements, also, indicated activation energies of ∼0.5 and 0.8 eV for the asgrown and annealed samples, respectively. Double-crystal x-ray diffraction showed that the LT-InGaP films had ∼47% In composition. The angular separation, Δθ, between the GaAs substrate and the as-grown LT-InGaP film on (004) reflection was increased by 20 arc-s after annealing. In order to better understand the annealing effect, a LT-InGaP film was grown on an InGaP film grown at 480°C. While annealing did not have any effect on the HT-InGaP peak position, the LT-InGaP peak was shifted toward the HT-InGaP peak, indicating a decrease in the LT-InGaP lattice parameter. Cross-sectional transmission electron microscopy indicates the presence of phase separation in LT-InGaP films, manifested in the form of a “precipitate-like” microstructure. The analytical scanning transmission electron microscopy analysis of the LT-InGaP film revealed a group-V nonstoichiometric deviation of ∼0.5 at.% P. To our knowledge, this is the first report about the growth and characterization of LT-InGaP films.  相似文献   

3.
A femtosecond, tunable color center laser was used to conduct degenerate pump-probe transmission spectroscopy of thin film low temperature grown molecular beam epitaxy In0.53Ga0.47As samples. Low temperature molecular beam epitaxy In0.53Ga0.47As exhibits a growth-temperature dependent femtosecond optical response when probed near the conduction band edge. Below Tg=250°C, the optical response time of the material is subpicosecond in duration, and we observed induced absorption, which we suggest is due to the formation of a quasi-“three-level system”.  相似文献   

4.
Al0.3Ga0.7As/ln0.15Ga0.85As doped-channel structures were grown by molecular beam epitaxy on 3″ GaAs substrates. The uniformities of electrical and optical properties across a 3″ wafer were evaluated. A maximum 10% variation of sheet charge density and Hall mobility was achieved for this doped-channel structure. A1 μm long gate field-effect transistor (FET) built on this layer demonstrated a peak transconductance of 350 mS/mm with a current density of 470 mA/mm. Compared to the high electron mobility transistors, this doped-channel FET provides a higher current density and higher breakdown voltage, which is very suitable for high-power microwave device applications.  相似文献   

5.
In0.5Ga0.5As on silicon photodetectors, including three types of interdigitated-finger devices as well as linear photoconductors, were fabricated and measured. The InGaAs/Si structure was grown by molecular beam epitaxy and utilized a 100 Å GaAs intervening nucleation layer between the silicon substrate and the InGaAs layers, step-graded InxGa1?xAs layers, and an in-situ grown 40 Å thick GaAs surface layer, which substantially enhanced the metal-semiconductor barrier height (Φb = 0.67 V) for the InGaAs. Schottky diodes fabricated independently of the photodetectors had nearly ideal characteristics with an ideality factor (n) of 1.02 and a reverse breakdown voltage of 40 V. The interdigitated Schottky photodetectors showed dark currents between <3nA and 54 μA at a 3 V bias and initial photoresponse rise times in the range of 600 to 725 ps, comparable to similar InGaAs metal-semiconductor-metal photodetectors grown lattice matched on InP. The photoconductors fabricated in the same material had rise times in the range of 575 to 1300 ps, thus being slightly slower, and had dark currents of 7 to 80 mA. The responsivity of the photoconductors was typically greater than that of the diodes by a factor of five to fifteen. The results show potential for monolithic integration of InGaAs photodetectors on silicon substrates.  相似文献   

6.
A very high electron mobility pseudomorphic In0.8Ga0.2As heterostructure is successfully grown on InP both by the elimination of the overshoot of flux densities and by the precise control of the flux ratio through a new calibration technique of RHEED oscillations in an MBE system. The critical layer thickness for the pseudomorphic growth of InGaAs on InP is found to follow the energy balance model, and a very high 2DEG mobility of over 1.5 and 16 m2/Vs at 293 and 10 K, respectively, is obtained.  相似文献   

7.
A number of factors contribute to the high n-type background carrier concentration (high 1015 to low 1016 cm−3) measured in MBE Ga0.47In0.53As lattice-matched to InP. The results of this study indicate that the outdiffusion of impurities from InP substrates into GalnAs epitaxial layers can account for as much as two-thirds of the background carrier concentration and can reduce mobilities by as much as 40%. These impurities and/or defects can be gettered at the surfaces of the InP by heat treatment and then removed by polishing. The GalnAs epitaxial layers grown on the heat-treated substrates have significantly improved electrical properties. Hall and SIMS measurements indicate that both donors and acceptors outdiffuse into the epitaxial layers during growth resulting in heavily compensated layers with reduced mobilities. The dominant donor species was identified by SIMS as Si, and the dominant acceptors as Fe, Cr and Mn.  相似文献   

8.
We report on the use of a new, valved, solid phosphorus cracker source for the growth of phosphides by molecular beam epitaxy. The source avoids the relatively high expense and high level of toxicity associated with the use of phosphine gas and eliminates the problems commonly encountered in using conventional solid phosphorus sources. The source has been used to grow GaInP and AlInP lattice-matched to GaAs substrates. The quality of the materials reported here is comparable to the best materials grown by other techniques. Photoluminescence and Raman scattering measurements indicate that the resulting material has a high degree of disorder on the group III sublattice. The new source is shown to be a reliable and attractive alternative for the growth of these phosphide materials.  相似文献   

9.
In/sub 0.53/Ga/sub 0.47/As-based monolithic interconnected modules (MIMs) of thermophotovoltaic (TPV) devices lattice-matched to InP were grown by solid source molecular beam epitaxy. The MIM device consisted of ten individual In/sub 0.53/Ga/sub 0.47/As TPV cells connected in series on an InP substrate. An open-circuit voltage (V/sub oc/) of 4.82 V, short-circuit current density (J/sub sc/) of 1.03 A/cm/sup 2/ and fill factor of /spl sim/73% were achieved for a ten-junction MIM with a bandgap of 0.74 eV under high intensity white light illumination. Device performance uniformity was better than 1.5% across a full 2-in InP wafer. The V/sub oc/ and J/sub sc/ values are the highest yet reported for 0.74-eV band gap n-p-n MIM devices.  相似文献   

10.
报道了InP衬底AlAs/In0.53Ga0.47As/AlAs两垒一阱结构共振隧穿二极管(RTD)器件的研制.结构材料由分子束外延制备,衬底片为(001)半绝缘InP单晶片,器件制作选用台面结构.测得室温下的峰值电流密度为1.06×105 A/cm2,峰-谷电流比为7.4,是国内报道的首例InP材料体系RTD器件.  相似文献   

11.
建立了不同结构的InP基PIN型In0.53Ga0.47As探测器光响应的物理模型.通过引入收集效率函数,模拟计算了探测器量子效率和光响应.采用该模型分别研究了正面进光和背面进光情况下典型的In0.53Ga0.047As/InP PIN探测器的结构参数对器件量子效率的影响.在此基础上提出了两种改进的背照射InGaAs/InP探测器结构,并讨论了其结构参数的优化.  相似文献   

12.
The fabrication of high-quality focal plane arrays from HgCdTe layers grown by molecular beam epitaxy (MBE) requires a high degree of lateral uniformity in material properties such as the alloy composition, doping concentration, and defect density. While it is well known that MBE source flux nonuniformity can lead to radial compositional variation for rotating substrates, we have also found that composition can be affected significantly by lateral variations in substrate temperature during growth. In diagnostic experiments, we systematically varied the substrate temperature during MBE and quantified the dependence of HgCdTe alloy composition on substrate temperature. Based on these results, we developed a methodology to quickly and nondestructively characterize MBE-grown layers using postgrowth spatial mapping of the cutoff wavelength from the Fourier transform infrared (FTIR) transmission at 300 K, and we were able to obtain a quantitative relationship between the measured spatial variations in cutoff and the substrate temperature lateral distribution during growth. We refined this methodology by more directly inferring the substrate temperature distribution from secondary ion mass spectroscopy (SIMS) measurements of the As concentration across a wafer, using the fact that the As incorporation rate in MBE-grown p-type layers is highly sensitive to substrate temperature. Combining this multiple-point SIMS analysis with FTIR spatial mapping, we demonstrate how the relative contributions from flux nonuniformity and temperature variations on the lateral composition uniformity can be separated. This capability to accurately map the lateral variations in the substrate temperature has been valuable in optimizing the mounting and bonding of large substrates for MBE growth, and can also be valuable for other aspects of MBE process development.  相似文献   

13.
报道了InP衬底AlAs /In0.53Ga0.47As/AlAs结构共振隧穿二极管(RTD)的研制过程.衬底片选用(001)半绝缘InP单晶片,结构材料使用分子束外延(MBE)技术制备,并用PL谱对外延片进行测试,器件采用台面结构.测得RTD器件室温下的峰谷电流比(PVCR)为7.4,峰值电流密度(Jp)为1.06×105A/cm-2,是国内首例成功的InP材料体系RTD.  相似文献   

14.
We report on the realization of a modified delta doping technique to obtain doping profiles in MBE grown GaAs, measured by capacitance-voltage (C-V) methods with full-widths at half-maximum (FWHM)s of 25 ± 5Å and peak concentrations of up to 1.1 × 1019 cm?3. In this modified delta doping technique, both the Ga and Si shutters were opened for 15 sec during the delta doped layer growth while only the Si shutter is opened during conventional delta doping. Comparison of the two techniques under the same dopant flux and shutter-open-time interval shows that higher sheet-carrier concentrations with narrower FWHMs and higher peak concentrations are obtained with the modified delta doping than with the conventional delta doping method. This suggests that Si donor incorporation is enhanced by the Ga adatoms while broadening of the Si donor distribution is still negligible for this short time interval. The effects of the substrate temperature and the shutter-open time on the Si donor distribution have also been investigated.  相似文献   

15.
We report the molecular beam epitaxial growth of InSb quantum dots (QD) inserted as sub-monolayers in an InAs matrix which exhibit intense mid-infrared photoluminescence up to room temperature. The InSb QD sheets were formed by briefly exposing the surface to an antimony flux (Sb2) exploiting an As-Sb anion exchange reaction. Light emitting diodes were fabricated using 10 InSb QD sheets and were found to exhibit bright electroluminescence with a single peak at 3.8 μm at room temperature.  相似文献   

16.
We demonstrate that the electrical quality of junctions fabricated in lattice-mismatched In0.75Ga0.25As on InP grown by molecular beam epitaxy can be improved with the addition of in situ anneals in the buffer layer that separates the substrate from the In0.75Ga0.25As device layers. Near infrared photodetectors fabricated using this material had dark current densities of approximately 2.5 mA/cm2 at a reverse bias of 1 V, which is more than one order of magnitude smaller than commercially available photodetectors grown using vapor phase epitaxy. Transmission electron microscopy revealed that dislocations due to the lattice mismatch between the substrate and the epitaxial layer are confined primarily to the buffer layer for all samples studied. No significant differences in x-ray diffraction spectra or dislocation distribution were observed on samples with and without in situ annealing. Atomic force microscopy indicated that all samples had a crosshatch pattern, and that the average surface roughness of the sample that contained in situ anneals is a factor of three greater than the sample without in situ anneals.  相似文献   

17.
We have grown highly strained In0.35Ga0.65As layers on GaAs substrates by molecular beam epitaxy to improve the performance of high hole mobility transistors (HHMTs). The mobility and sheet hole concentration of double side doped pseudomorphic HHMT structures at room temperature reached 314 cm2/V-s and 1.19 × 1012 cm−2, respectively. Photoluminescence measurements at room temperature show good crystalline quality of the In0.35Ga0.65As layers. This study suggests that the performance of HHMTs can be improved by using high-quality In0.35Ga0.65As layers for the channel of double side doped heterostructures pseudomorphically grown on GaAs substrates.  相似文献   

18.
Halogen lamp rapid thermal annealing was used to activate 100 keV Si and 50 keV Be implants in In0.53Ga0.47As for doses ranging between 5 × 1012−4 × 1014 cm−2. Anneals were performed at different temperatures and time durations. Close to one hundred percent activation was obtained for the 4.1 × 1013 cm−2 Si-implant, using an 850° C/5 s anneal. Si in-diffusion was not observed for the rapid thermal annealing temperatures and times used in this study. For the 5 × 1013 cm−2 Be-implant, a maximum activation of 56% was measured. Be-implant depth profiles matched closely with gaussian profiles predicted by LSS theory for the 800° C/5 s anneals. Peak carrier concentrations of 1.7 × 1019 and 4 × 1018 cm−3 were achieved for the 4 × 1014 cm−2 Si and Be implants, respectively. For comparison, furnace anneals were also performed for all doses.  相似文献   

19.
A drastic decrease in the sheet carrier concentration of modulation-doped Al0.48In0.52As/Ga0.47In0.53As/InP heterostructures has been observed after O2 plasma treatment followed by thermal treatment up to 350°C. The decrease in sheet carrier concentration, which is speculated to be caused by both plasma damage and impurities penetrating from the surface of the epilayer, can be suppressed substantially by using PH3 plasma treatment prior to the O2 plasma and thermal treatments.  相似文献   

20.
通过合理的外延层材料结构设计和改进的器件制备工艺,制备出功率增益截止频率(fmax)为183GHz的晶格匹配InP基In0.53Ga0.47As-In0.52Al0.48As HEMT。该fmax为国内HEMT器件最高值,还报道了器件的结构、制备工艺以及器件的直流和高频特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号