首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blood supply is essential for the maintenance of epididymal function. Since there is no considerable neovascularization in the epididymis, this tissue could represent a suitable model to study the vascular endothelial growth factor (VEGF) effect for vascular permeability. We studied the expression and function of VEGF and its receptors fms-like tyrosine kinase (Flt-1) and fetal liver kinase (designated as kinase insert domain-containing receptor, KDR in the human) in the human epididymis. VEGF and VEGF receptors mRNA were detected in the human epididymal tissue. VEGF protein was localized in peritubular and in ciliated cells of efferent ducts as well as in peritubular and basal cells of the epididymal duct. Vascular endothelial cells did not express VEGF. Flt-1 protein was localized in ciliated cells of efferent ducts and in lymphatic vessels. Vascular endothelial cells were negative for Flt-1 but positive for KDR. In vitro VEGF165 treatment of epididymal tissue induced endothelial fenestrations and opening of interendothelial junctions. Additionally, we observed for the first time that VEGF could induce transendothelial gaps. We conclude that these gaps might be of importance not only for molecular transport but also for cell passage across the vessel wall, which may be significant for tumor metastasis. VEGF may act as a paracrine effector to influence the permeability of lymphatic vessels via Flt-1, and of blood vessels via KDR.  相似文献   

2.
Vascular endothelial growth factor (VEGF), also known as vascular permeability factor, induces endothelial proliferation in vitro and vascular permeability in vivo. The human transmembrane c-fms-like tyrosine kinase Flt-1 has recently been identified as a VEGF receptor. Flt-1 kinase has seven immunoglobulin-like extracellular domains and a kinase insert sequence, features shared by two other human gene-encoded proteins, kinase insert domain-containing receptor (KDR) and FLT-4. In this study we show that the mouse homologue of KDR, Flk-1, is a second functional VEGF receptor. Flk-1 binds VEGF with high affinity, undergoes autophosphorylation, and mediates VEGF-dependent Ca2+ efflux in Xenopus oocytes injected with Flk-1 mRNA. We also demonstrate by in situ hybridization that Flk-1 protein expression in the mouse embryo is restricted to the vascular endothelium and the umbilical cord stroma. VEGF and its receptors Flk-1/KDR and Flt-1 may play a role in vascular development and regulation of vascular permeability.  相似文献   

3.
Placenta growth factor (PlGF) is a homodimeric glycoprotein, 46-50 kDa in size, belonging to the vascular endothelial growth factor (VEGF) sub-family. It exists as two isoforms, PlGF-1 and -2, the latter having a heparin-binding domain. Like VEGF, it is a potent angiogenic factor; however, PlGF homodimers interact with the VEGF receptor Flt-1 (fms-like tyrosine kinase), but not with the kinase domain-containing region (KDR). Since PlGF is made by the human placenta and extravillous trophoblast (EV-T) cells of the human placenta express Flt-1 in situ, these cells may be responsive to PlGF. Therefore, this study examined whether first trimester EVT cells propagated in vitro expressed the mRNA or the protein of Flt-1 and PlGF, and whether exogenous PlGF-1 had any effect on EVT cell proliferation, migration or invasiveness. Immunocytochemical and RT-PCR analyses revealed that both normal and SV40 Tag-immortalized EVT cells expressed the protein and mRNA for Flt-1, but not for PlGF-1 or -2. Exogenous PlGF-1 stimulated proliferation (measured by 3H-thymidine uptake) of normal EVT cells in a concentration-dependent manner, but only in the presence of excess heparan sulphate proteoglycans (HSPGs). These results raise two possibilities: that exogenous PlGF-1 (in spite of having a low affinity for heparin) was sequestered away from its receptor because of binding to heparan sulphate proteoglycans on the EVT cell surface or the ECM, or that HSPGs could modify the interaction between Flt-1 and PlGF. PlGF-1, in the presence or absence of HSPGs, however, had no effect on EVT migration or invasiveness, when measured with a transwell invasion (in the presence of Matrigel) or migration (in the absence of Matrigel) assay. These findings place PlGF amongst a large group of growth factors that promote EVT cell proliferation without influencing their migratory or invasive behaviours, and suggest that PlGF-Flt-1 interactions may be regulated by HSPGs in situ.  相似文献   

4.
Receptor tyrosine kinases Flt-1 and Flk-1/KDR, and their ligand, the vascular endothelial growth factor (VEGF), were shown to be essential for angiogenesis in the mouse embryo by gene targeting. Flk-1/KDR null mutant mice exhibited impaired endothelial and hematopoietic cell development. On the other hand, Flt-1 null mutation resulted in early embryonic death at embryonic day 8.5, showing disorganization of blood vessels, such as overgrowth of endothelial cells. Flt-1 differs from Flk-1 in that it displays a higher affinity for VEGF but lower kinase activity, suggesting the importance of its extracellular domain. To examine the biological role of Flt-1 in embryonic development and vascular formation, we deleted the kinase domain without affecting the ligand binding region. Flt-1 tyrosine kinase-deficient homozygous mice (flt-1(TK-/-)) developed normal vessels and survived. However, VEGF-induced macrophage migration was strongly suppressed in flt-1(TK-/-) mice. These results indicate that Flt-1 without tyrosine kinase domain is sufficient to allow embryonic development with normal angiogenesis, and that a receptor tyrosine kinase plays a main biological role as a ligand-binding molecule.  相似文献   

5.
FGF-2 and VEGF are potent angiogenesis inducers in vivo and in vitro. Here we show that FGF-2 induces VEGF expression in vascular endothelial cells through autocrine and paracrine mechanisms. Addition of recombinant FGF-2 to cultured endothelial cells or upregulation of endogenous FGF-2 results in increased VEGF expression. Neutralizing monoclonal antibody to VEGF inhibits FGF-2-induced endothelial cell proliferation. Endogenous 18-kD FGF-2 production upregulates VEGF expression through extracellular interaction with cell membrane receptors; high-Mr FGF-2 (22-24-kD) acts via intracellular mechanism(s). During angiogenesis induced by FGF-2 in the mouse cornea, the endothelial cells of forming capillaries express VEGF mRNA and protein. Systemic administration of neutralizing VEGF antibody dramatically reduces FGF-2-induced angiogenesis. Because occasional fibroblasts or other cell types present in the corneal stroma show no significant expression of VEGF mRNA, these findings demonstrate that endothelial cell-derived VEGF is an important autocrine mediator of FGF-2-induced angiogenesis. Thus, angiogenesis in vivo can be modulated by a novel mechanism that involves the autocrine action of vascular endothelial cell-derived FGF-2 and VEGF.  相似文献   

6.
Vascular endothelial growth factor (VEGF) receptor KDR (kinase-insert-domain-containing receptor) is linked to endothelial cell proliferation, and VEGF receptor Flt-1 (fms-like tyrosine kinase) is essential for the organization of embryonic vasculature. Flt-1 is also known to be expressed on adult endothelial and trophoblast cells, although its function has not yet been established. Herein we report that human trophoblast and endothelial cells contain functional Flt-1 receptors for VEGF that trigger the synthesis and release of nitric oxide (NO) by the activation of constitutive NO synthase (cNOS). In first-trimester human trophoblast cells isolated by chorionic villous sampling, VEGF165 stimulated NO release in a concentration- and time-dependent manner, with a maximal increase of 60% (in comparison to basal release levels) occurring within 30 minutes (basal: 1342 pmol/ml; VEGF (10 ng/ml): 2162 pmol/ml; p < 0.001), as measured by an NO chemiluminescence analyzer. VEGF20, a peptide fragment that is composed of the first 20 amino acids at N-terminus, displayed properties of a partial agonist. VEGF165- and VEGF20-mediated NO biosynthesis was attenuated by NG-nitro-L-arginine in a concentration-dependent fashion, indicating NOS activation. VEGF-neutralizing anti-VEGF monoclonal antibody significantly inhibited VEGF-mediated NO release (p < 0.001), and the addition of a neutralizing anti-Flt-1 antibody inhibited the response by 79.6% +/- 7.59%, an effect found to be reversible with higher concentrations of VEGF. In contrast, anti-KDR antibody had no significant inhibitory effect. RT-PCR confirmed the presence of mRNA encoding the Flt-1 and KDR receptors as well as the endothelial form of cNOS in trophoblast cells. VEGF165-stimulated NO release was inhibited by genistein (5 microM; p < 0.001) as well as by the removal of calcium from the extracellular environment (p < 0.001), which suggests the contingency of this process on tyrosine phosphorylation and extracellular calcium, respectively. Addition of sodium nitroprusside, an NO donor, inhibited trophoblast DNA synthesis in a concentration-dependent manner, as measured by [3H]thymidine incorporation, without affecting cell viability. VEGF under maximal NO production had no mitogenic activity, suggesting that trophoblast-derived NO may limit trophoblast proliferation. Endogenous trophoblast DNA synthesis increased 3-fold in the presence of anti-Flt-1 antibody but not in the presence of anti-KDR antibody, suggesting that Flt-1 functions as a growth suppressive receptor to counteract the proliferative actions of KDR. Levels of immunoreactive endothelial cNOS were markedly increased in growth-restricted placentae (n = 4) in comparison to those of normal (n = 5) placentae, which may account for the relatively small-sized placentae associated with intrauterine growth restriction. VEGF165 stimulated NO release via phosphorylation of the Flt-1 receptor, indicating that VEGF may be an autocrine regulator of NO biosynthesis by aiding trophoblast penetration into spinal arterioles during the first trimester and preventing platelet aggregation within the placenta. Finally, the activation of Flt-1 receptor suppressed trophoblast DNA synthesis within the placenta via NO.  相似文献   

7.
Vascular endothelial growth factor (VEGF) mediates endothelial cell proliferation, angiogenesis, and vascular permeability via the endothelial cell receptors, KDR/Flk-1 and Flt-1. Recently, a gene encoding a polypeptide with about 25% amino acid identity to mammalian VEGF was identified in the genome of Orf virus (OV), a parapoxvirus that affects sheep and goats and occasionally, humans, to generate lesions with angiogenesis. In this study, we examined the biological activities and receptor of OV-derived NZ-7 VEGF (VEGF-E). VEGF-E was found to be a dimer of about 20 kDa with no basic domain nor affinity for heparin column, similar to VEGF121 subtype. VEGF121 has 10-100-fold less endothelial cell mitotic activity than VEGF165 due to lack of a heparin-binding basic region. Interestingly, however, VEGF-E showed almost equal levels of mitotic activity on primary endothelial cells and vascular permeability activity as VEGF165. Furthermore, VEGF-E bound KDR/Flk-1 (VEGFR-2) and induced its autophosphorylation to almost the same extent as VEGF165, but did not bind Flt-1 (VEGFR-1) nor induce autophosphorylation of Flt-1. These results indicate that VEGF-E is a novel type of endothelial growth factor, utilizing only one of the VEGF receptors, and carrying a potent mitogenic activity without affinity to heparin.  相似文献   

8.
9.
10.
11.
12.
Flt-1 tyrosine kinase, vascular endothelial growth factor (VEGF) receptor-1, binds VEGF and a new VEGF-related ligand, placenta growth factor, but KDR/Flk-1 (VEGF receptor-2) binds only VEGF. To characterize the functional regions in the Flt-1 extracellular domain such as the ligand binding region and the dimer formation of the receptor, we constructed a series of mutants of the Flt-1 extracellular domain as soluble forms in a baculovirus system. We found that a region carrying the N-terminal 1st to 3rd immunoglobulin (Ig)-like domains of Flt-1 binds both ligands with high affinity. However, for dimer formation of soluble Flt-1, a region further downstream in the Flt-1 extracellular domain was required. Mutant Flt-1 receptors expressed in COS cells confirmed the requirement of the 4th to 7th Ig region for the activation of Flt-1 tyrosine kinase. Soluble Flt-1 carrying the N-terminal 1st to 3rd Ig region suppressed VEGF-dependent endothelial proliferation in vitro to the same level as the larger forms of soluble Flt-1, suggesting that the binding of one soluble Flt-1 molecule to one subunit of the VEGF homodimer may be sufficient to block the VEGF activity.  相似文献   

13.
Vascular endothelial growth factor (VEGF) is an endothelial cell mitogen which stimulates angiogenesis. VEGF is regulated by multiple factors such as hypoxia, phorbol esters, and growth factors. However, data concerning the expression of VEGF in the different vascular cell types and its regulation by cAMP are not available. In the present study, we have investigated the effect of adenylate cyclase activation on VEGF mRNA expression in rat vascular cells in primary culture. Basal VEGF expression is greater in smooth muscle cells than in endothelial cells and fibroblasts. A 4-h treatment with forskolin (10(-5) M) induced a 2-fold stimulation of VEGF mRNA expression in smooth muscle cells and fibroblasts, but, in contrast, did not affect VEGF expression in endothelial cells. In smooth muscle cells, a pharmacologically induced increase in intracellular cAMP levels using iloprost or isoprenaline led to a rise in VEGF mRNA expression comparable to that induced by forskolin. Adenosine, which increases cAMP levels in smooth muscle cells, also increases VEGF expression. Moreover, the 2.2-fold stimulation of VEGF expression by adenosine was enhanced following a cotreatment with cobalt chloride (a hypoxia miming agent). The observed additive effect (4.3-fold increase) suggests that these two factors, hypoxia and adenosine, regulate VEGF mRNA expression in smooth muscle cells by independent mechanisms.  相似文献   

14.
15.
Normal development and function of the placenta requires invasion of the maternal decidua by trophoblasts, followed by abundant and organized vascular growth. Little is known of the significance and function of the vascular endothelial growth factor (VEGF) family, which includes VEGF, VEGF-B, and VEGF-C, and of placenta growth factor (PIGF) in these processes. In this study we have analyzed the expression of VEGF and PIGF mRNAs and their protein products in placental tissue obtained from noncomplicated pregnancies. Expression of VEGF and PIGF mRNA was observed by in situ hybridization in the chorionic mesenchyme and villous trophoblasts, respectively. Immunostaining localized the VEGF and PIGF proteins in the vascular endothelium, which was defined by staining for von Willebrand factor and for the Tie receptor tyrosine kinase, an early endothelial cell marker. VEGF-B and VEGF-C mRNAs were strongly expressed in human placenta as evidenced by Northern blot analysis. These data imply that VEGF and PIGF are produced by different cells but that both target the endothelial cells of normal human term placenta.  相似文献   

16.
Multiple growth factors synergistically stimulate proliferation of primitive hematopoietic progenitor cells. A human myeloid cell line, KPB-M15, constitutively produces a novel hematopoietic cytokine, termed stem cell growth factor (SCGF), possessing species-specific proliferative activities. Here we report the molecular cloning, expression, and characterization of a cDNA encoding human SCGF using a newly developed lambdaSHDM vector that is more efficient for differential and expression cloning. cDNA for SCGF encodes a 29-kDa polypeptide without N-linked glycosylation. SCGF transiently produced by COS-1 cells supports growth of hematopoietic progenitor cells through a short-term liquid culture of bone marrow cells and exhibits promoting activities on erythroid and granulocyte/macrophage progenitor cells in primary semisolid culture with erythropoietin and granulocyte/macrophage colony-stimulating factor, respectively. Expression of SCGF mRNA is restricted to myeloid cells and fibroblasts, suggesting that SCGF is a growth factor functioning within the hematopoietic microenvironment. SCGF could disclose some human-specific mechanisms as yet unidentified from studies on the murine hematopoietic system.  相似文献   

17.
A paradox of Flt-1, a tyrosine kinase receptor for vascular endothelial growth factor (VEGF), is that the ligand cannot activate the receptor to stimulate growth of cells that exogenously overexpress the receptor. In order to find Flt-1 kinase-dependent biological systems, we obtained for the first time activated forms of the Flt-1 kinase in a ligand-independent manner. Replacement of the ABL sequences in the human leukemia oncoprotein BCR-ABL with the cytoplasmic domain of Flt-1 (BCR-FLT) followed by a retroviral random mutagenesis scheme gave constitutively active artificial chimera BCR-FLTm with mutations within the Flt-1 sequence. Like BCR-ABL it could, but not the original BCR-FLT, transform Rat1 fibroblasts, abrogate cytokine dependence in Ba/F3 cells, and induce neurite-like structures in neuronal PC12 cells. Interestingly, Rat1 cells transformed by BCR-FLTm formed tube-like structures in basement membrane matrix. BCR-FLTm retroviruses may be a very useful tool to investigate an as yet uncovered functions of the Flt-1 kinase.  相似文献   

18.
Flt-1, a tyrosine kinase receptor for vascular endothelial growth factor (VEGF), plays important roles in the angiogenesis required for embryogenesis and in monocyte/macrophage migration. However, the signal transduction of Flt-1 is poorly understood due to its very weak tyrosine kinase activity. Therefore, we overexpressed Flt-1 in insect cells using the Baculovirus system in order to examine for autophosphorylation sites and association with adapter molecules such as phospholipase Cgamma-1 (PLCgamma). Tyr-1169 and Tyr-1213 on Flt-1 were found to be auto-phosphorylated, but only a phenylalanine mutant of Tyr-1169 strongly suppressed its association with PLCgamma. In Flt-1 overexpressing NIH3T3 cells, VEGF induced autophosphorylation of Flt-1, tyrosine-phosphorylation of PLCgamma and protein kinase C-dependent activation of MAP kinase. These results strongly suggest that Tyr-1169 on Flt-1 is a major binding site for PLCgamma and important for Flt-1 signal transduction within the cell.  相似文献   

19.
The different members of the vascular endothelial growth factor (VEGF) family act as key regulators of endothelial cell function controlling vasculogenesis, angiogenesis, vascular permeability and endothelial cell survival. In this study, we have functionally characterized a novel member of the VEGF family, designated VEGF-E. VEGF-E sequences are encoded by the parapoxvirus Orf virus (OV). They carry the characteristic cysteine knot motif present in all mammalian VEGFs, while forming a microheterogenic group distinct from previously described members of this family. VEGF-E was expressed as the native protein in mammalian cells or as a recombinant protein in Escherichia coli and was shown to act as a heat-stable, secreted dimer. VEGF-E and VEGF-A were found to possess similar bioactivities, i.e. both factors stimulate the release of tissue factor (TF), the proliferation, chemotaxis and sprouting of cultured vascular endothelial cells in vitro and angiogenesis in vivo. Like VEGF-A, VEGF-E was found to bind with high affinity to VEGF receptor-2 (KDR) resulting in receptor autophosphorylation and a biphasic rise in free intracellular Ca2+ concentration, whilst in contrast to VEGF-A, VEGF-E did not bind to VEGF receptor-1 (Flt-1). VEGF-E is thus a potent angiogenic factor selectively binding to VEGF receptor-2. These data strongly indicate that activation of VEGF receptor-2 alone can efficiently stimulate angiogenesis.  相似文献   

20.
The vascular endothelial growth factor (VEGF) family has recently expanded by the identification and cloning of three additional members, namely VEGF-B, VEGF-C, and VEGF-D. In this study we demonstrate that VEGF-B binds selectively to VEGF receptor-1/Flt-1. This binding can be blocked by excess VEGF, indicating that the interaction sites on the receptor are at least partially overlapping. Mutating the putative VEGF receptor-1/Flt-1 binding determinants Asp63, Asp64, and Glu67 to alanine residues in VEGF-B reduced the affinity to VEGF receptor-1 but did not abolish binding. Mutational analysis of conserved cysteines contributing to VEGF-B dimer formation suggest a structural conservation with VEGF and platelet-derived growth factor. Proteolytic processing of the 60-kDa VEGF-B186 dimer results in a 34-kDa dimer containing the receptor-binding epitopes. The binding of VEGF-B to its receptor on endothelial cells leads to increased expression and activity of urokinase type plasminogen activator and plasminogen activator inhibitor 1, suggesting a role for VEGF-B in the regulation of extracellular matrix degradation, cell adhesion, and migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号