首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The world's thinnest flexible full‐color 5.6‐in. active‐matrix organic‐light‐emitting‐diode (AMOLED) display with a top‐emission mode on stainless‐steel foil was demonstrated. The stress in the stainless‐steel foil during the thermal process was investigated to minimize substrate bending. The p‐channel poly‐Si TFTs on stainless‐steel foil exhibited a field‐effectmobility of 71.2 cm2/N‐sec, threshold voltage of ?2.7 V, off current of 6.7 × 1013 A/μm, and a subthreshold slope of 0.63 V/dec. These TFT performances made it possible to integrate a scan driver circuit on the panel. A top‐emission EL structure was used as the display element, and thin‐film encapsulation was performed to realize a thin and flexible display. The full‐color flexible AMOLED display on stainless‐steel foil is promising for mobile applications because of its thin, light, rugged, and flexible properties.  相似文献   

2.
Abstract— Large‐sized active‐matrix organic light‐emitting diode (AMOLED) displays require high‐frame‐rate driving technology to achieve high‐quality 3‐D images. However, higher‐frame‐rate driving decreases the time available for compensating Vth in the pixel circuit. Therefore, a new method needs to be developed to compensate the pixel circuit in a shorter time interval. In this work, image quality of a 14‐in. quarter full‐high‐definition (qFHD) AMOLED driven at a frame rate of over 240 Hz was investigated. It was found that image degradation is related to the time available for compensation of the driving TFT threshold voltage. To solve this problem, novel AMOLED pixel circuits for high‐speed operation are proposed to compensate threshold‐voltage variation at frame rates above 240 Hz. When Vth is varied over ±1.0 V, conventional pixel circuits showed current deviations of 22.8 and 39.8% at 240 and 480 Hz, respectively, while the new pixel circuits showed deviations of only 2.6 and 5.4%.  相似文献   

3.
In this paper, an active‐matrix organic light‐emitting diode pixel circuit is proposed to improve the image quality of 5.87‐in. mobile displays with 1000 ppi resolution in augmented and virtual reality applications. The proposed pixel circuit consisting of three thin‐film transistors (TFTs) and two capacitors (3T2C) employs a simultaneous emission driving method to reduce the number of TFTs and the emission current error caused by variations in threshold voltage (Vth) and subthreshold slope (SS) of the low‐temperature polycrystalline silicon TFTs. Using the simultaneous emission driving method, the compensation time is increased to 90 μs from 6.5 μs achieved in the conventional six TFTs and one capacitor (6T1C) pixel circuit. Consequently, the emission current error of the proposed 3T2C pixel circuit was reduced to ±3 least significant bit (LSB) from ±12 LSB at the 32nd gray level when the variations in both the Vth and SS are ±4σ. Moreover, both the crosstalk errors due to the parasitic capacitances between the adjacent pixel circuits and due to the leakage current were achieved to be less than ±1 LSB over the entire gray level. Therefore, the proposed pixel circuit is very suitable for active‐matrix organic light‐emitting diode displays requiring high image quality.  相似文献   

4.
We present a qHD (960 × 540 with three sub‐pixels) top‐emitting active‐matrix organic light‐emitting diode display with a 340‐ppi resolution using a self‐aligned IGZO thin‐film transistor backplane on polyimide foil with a humidity barrier. The back plane process flow is based on a seven‐layer photolithography process with a CD = 4 μm. We implement a 2T1C pixel engine and use a commercial source driver IC made for low‐temperature polycrystalline silicon. By using an IGZO thin‐film transistor and leveraging the extremely low off current, we can switch off the power to the source and gate driver while maintaining the image unchanged for several minutes. We demonstrate that, depending on the image content, low‐refresh operation yields reduction in power consumption of up to 50% compared with normal (continuous) operation. We show that with the further increase in resolution, the power saving through state retention will be even more significant.  相似文献   

5.
A new subject‐specific course on thin‐film transistor (TFT) circuit design is introduced, covering related knowledge of display technologies, TFT device physics, processing, characterization, modeling and circuit design. A design project is required for students to deepen the understanding even more and get hands‐on design experience. This course can be an intense 1‐week course to offer a full training of design engineers in an organized way to meet the ever‐increasing needs in display industry for TFT circuit design specialists. It can also be organized in one semester for electrical engineering Master's and Ph.D. students.  相似文献   

6.
Abstract— Currently, powder electroluminescence is used for low‐brightness flexible lamps offering durable plastic‐based lighting solutions principally for low‐ambient light conditions where lighting or backlighting is required. Sphere‐supported thin‐film electroluminescence (SSTFEL) promises dramatic new capability in both flexible lamps and displays owing to its high brightness and long‐life capability. SSTFEL is based on robust thin‐film phosphors deposited on spherical ceramic dielectric particles which are embedded in a thin plastic sheet. A printing approach permits versatile, low‐cost manufacturing of patterned SSTFEL devices and eliminates the need for high‐temperature substrates.  相似文献   

7.
This paper presents a novel compensation pixel circuit for active‐matrix organic light‐emitting diode displays, in which the coupling effect mask technology is developed to compensate the threshold voltage of driving thin‐film transistor whether it is positive or negative. Twenty discrete compensation pixel circuits have been fabricated by In‐Zn‐O thin‐film transistors process. It is measured that the non‐uniformity of the proposed pixel circuit is significantly reduced with an average value of 8.6%. Furthermore, the organic light‐emitting diode emission current remains constant during 6 h continuous operation, which also confirms the validity of the proposed pixel circuit.  相似文献   

8.
Abstract— A new voltage‐addressed pixel using a multiple drive distribution has been developed to improve, in a simple way, the brightness uniformity of active‐matrix organic light‐emitting‐diode (AMOLED) displays. Moreover, circuits were realized using microcrystalline‐silicon (μc‐Si) films prepared at 600°C using a standard low‐pressure CVD system. The developed p‐channel TFTs exhibit a field‐effect mobility close to 6 cm2/V‐sec. The experimental results show that the proposed spatial distribution of driving TFTs improves the uniformity of current levels, in contrast to the conventional two‐TFT pixel structure. Backplane performances have been compared using circuits based on μc‐Si and furnace‐annealed polysilicon materials. Finally, this technology has been used to make an AMOLED demonstration unit using a top‐emission OLED structure. Thus, by combining both an μc‐Si active‐layer and a current‐averaging driver, an unsophisticated solution is provided to solve the inter‐pixel non‐uniformity issue.  相似文献   

9.
Abstract— A new driving scheme for active‐matrix organic light‐emitting diodes (AMOLED) displays based on voltage programming is proposed. While conventional voltage drivers have a trade‐off between speed and accuracy, the new scheme is inherently fast and accurate. Based on the new driving scheme, a fast pixel circuit is designed using amorphous‐silicon (a‐Si) thin‐film transistors (TFTs). As the simulation results indicate, this pixel circuit can compensate the threshold‐voltage shift (VT shift) of the driver transistors. This pixel can be programmed in just 10 μsec, and it can compensate the threshold‐voltage shifts over 5 V with an error rate of less than 5% for a 1 ‐μA pixel current.  相似文献   

10.
Abstract— Organic‐polymer‐based thin‐film transistors (OP‐TFTs) look very promising for flexible, large‐area, and low‐cost organic electronics. In this paper, we describe devices based on spin‐coated organic polymer that reproducibly exhibit field‐effect mobility values around 5 × 10?3 cm2/V‐sec. We also address fabrication, performance, and stability issues that are critical for the use of such devices in active‐matrix flat‐panel displays.  相似文献   

11.
Since 2010, vacuum‐processed oxide semiconductors have greatly improved with the publication of more than 1,300 related papers. Although the number of researches on oxide semiconductors has continued to increase year by year, the average field‐effect mobility of oxide semiconductor thin‐film transistors (TFTs) has not shown significant improvement; from 2010 to 2018; the average field‐effect mobility of vacuum‐processed n‐type oxide TFTs is around 20 cm2/Vs. To investigate the obstacles for performance improvements, the latest progress and researches on vacuum‐processed oxide semiconductor TFTs for high performance over the past decade are highlighted, along with the pros and cons of each technology. Finally, complementary metal oxide semiconductor (CMOS) logic circuits composed of both n‐ and p‐type oxide semiconductor TFTs are introduced, and future prospects for this state‐of‐the‐art research on the oxide semiconductors are presented.  相似文献   

12.
Novel two pixel structures are proposed for high‐resolution active matrix organic light‐emitting diode displays. The proposed two pixels (pixel structures A and B) use the negative feedback method for high‐resolution displays that requires to have small‐sized storage capacitance. The proposed pixel structures A and B improve the luminance uniformity by reducing the voltage distortion in the storage capacitor. However, the proposed pixel structure A is vulnerable to the organic light‐emitting diode (OLED) degradation because the anode voltage of the OLED affects the emission current. In order to compensate the OLED degradation, the proposed pixel structure B stores the turn‐on voltage of OLEDs in the storage capacitor. The simulation results show that the emission current error of the proposed pixel structure B is improved by four times in comparison with the proposed pixel structure A when the OLED turn‐on voltage increases by 0.1 V. Also, the emission current error of the proposed pixel structure B when the threshold voltage of driving thin‐film transistors varies from ?2.2 to ?1.8 V is from ?0.69 least significant bit (LSB) to 0.13 LSB, which shows the excellent luminance uniformity. The proposed pixels are designed for 5.5‐in. full high‐definition displays.  相似文献   

13.
Abstract— Inverted‐staggered amorphous In‐Ga‐Zn‐O (a‐InGaZnO) thin‐film transistors (TFTs) were fabricated and characterized on glass substrates. The a‐InGaZnO TFTs exhibit adequate field‐effect mobilities, sharp subthreshold slopes, and very low off‐currents. The current temperature stress (CTS) on the a‐InGaZnO TFTs was performed, and the effect of stress temperature (TSTR), stress current (ISTR), and TFT biasing condition on their electrical stability was investigated. Finally, SPICE modelling for a‐InGaZnO TFTs was developed based on experimental data. Several active‐matrix organic light‐emitting‐display (AMOLED) pixel circuits were simulated, and the potential advantages of using a‐InGaZnO TFTs were discussed.  相似文献   

14.
Abstract— An active‐matrix organic light‐emitting diode (AMOLED) display driven by hydrogenated amorphous‐silicon thin‐film transistors (a‐Si:H TFTs) on flexible, stainless‐steel foil was demonstrated. The 2‐TFT voltage‐programmed pixel circuits were fabricated using a standard a‐Si:H process at maximum temperature of 280°C in a bottom‐gate staggered source‐drain geometry. The 70‐ppi monochrome display consists of (48 × 4) × 48 subpixels of 92 ×369 μm each, with an aperture ratio of 48%. The a‐Si:H TFT pixel circuits drive top‐emitting green electrophosphorescent OLEDs to a peak luminance of 2000 cd/m2.  相似文献   

15.
Abstract— Amorphous‐silicon (a‐Si:H) thin‐film transistors (TFTs) on soda‐lime glass were fabricated by using a diffusion barrier and a low‐temperature process at 200°C. The silicon nitride barrier was optimized in terms of diffusion blocking effectiveness, film adhesion, and surface finish. TFTs on soda‐lime glass achieved a saturation mobility 0.47 cm2/V‐sec, threshold voltage of 0 V, an off‐current of 7.7×10?11 A, and a sub‐threshold swing of 1.0 V/dec. From diffusion experiments, a 30,000‐hour lifetime for the TFT device at 80°C was estimated, and the robustness of the silicon nitride barrier against long‐term migration of sodium was demonstrated.  相似文献   

16.
Abstract— Active‐matrix organic light‐emitting diode (AMOLED) displays have gained wide attention and are expected to dominate the flat‐panel‐display industry in the near future. However, organic light‐emitting devices have stringent demands on the driving transistors due to their current‐driving characteristics. In recent years, the oxide‐semiconductor‐based thin‐film transistors (oxide TFTs) have also been widely investigated due to their various benefits. In this paper, the development and performance of oxide TFTs will be discussed. Specifically, effects of back‐channel interface conditions on these devices will be investigated. The performance and bias stress stability of the oxide TFTs were improved by inserting a SiOx protection layer and an N2O plasma treatment on the back‐channel interface. On the other hand, considering the n‐type nature of oxide TFTs, 2.4‐in. AMOLED displays with oxide TFTs and both normal and inverted OLEDs were developed and their reliability was studied. Results of the checkerboard stimuli tests show that the inverted OLEDs indeed have some advantages due to their suitable driving schemes. In addition, a novel 2.4‐in. transparent AMOLED display with a high transparency of 45% and high resolution of 166 ppi was also demonstrated using all the transparent or semi‐transparent materials, based on oxide‐TFT technologies.  相似文献   

17.
Abstract— A low‐temperature amorphous‐silicon (a‐Si:H) thin‐film‐transistor (TFT) backplane technology for high‐information‐content flexible displays has been developed. Backplanes were integrated with frontplane technologies to produce high‐performance active‐matrix reflective electrophoretic ink, reflective cholesteric liquid crystal and emissive OLED flexible‐display technology demonstrators (TDs). Backplanes up to 4 in. on the diagonal have been fabricated on a 6‐in. wafer‐scale pilot line. The critical steps in the evolution of backplane technology, from qualification of baseline low‐temperature (180°C) a‐Si:H process on the 6‐in. line with rigid substrates, to transferring the process to flexible plastic and flexible stainless‐steel substrates, to form factor scale‐up of the TFT arrays, and finally manufacturing scale‐up to a Gen 2 (370 × 470 mm) display‐scale pilot line, will be reviewed.  相似文献   

18.
Abstract— In this paper, the performance of active‐matrix‐driven small‐molecule OLED displays incorporating high‐efficiency electrophosphorescent dopants were analyzed. These enable triplet excitons to contribute to light emission and have led to pixel efficiencies of over 40 lm/W. By considering a conventional two TFT per pixel addressing scheme, we show how this OLED design enables the fabrication of very‐low‐power‐consumption displays (lower than AMLCDs). We simulate display performance and perform a trade‐off analysis comparing the power consumption of displays driven by both amorphous‐silicon and low‐temperature poly‐Si TFTs.  相似文献   

19.
We have successfully reduced threshold voltage shifts of amorphous In–Ga–Zn–O thin‐film transistors (a‐IGZO TFTs) on transparent polyimide films against bias‐temperature stress below 100 mV, which is equivalent to those on glass substrates. This high reliability was achieved by dense IGZO thin films and annealing temperature below 300 °C. We have reduced bulk defects of IGZO thin films and interface defects between gate insulator and IGZO thin film by optimizing deposition conditions of IGZO thin films and annealing conditions. Furthermore, a 3.0‐in. flexible active‐matrix organic light‐emitting diode was demonstrated with the highly reliable a‐IGZO TFT backplane on polyimide film. The polyimide film coating process is compatible with mass‐production lines. We believe that flexible organic light‐emitting diode displays can be mass produced using a‐IGZO TFT backplane on polyimide films.  相似文献   

20.
Abstract— A complete poly‐Si thin‐film transistor (TFT) on plastic process has been optimized to produce TFT arrays for active‐matrix displays. We present a detailed study of the poly‐Si crystallization process, a mechanism for protecting the plastic substrate from the pulsed laser used to crystallize the silicon, and a high‐performance low‐temperature gate dielectric film. Poly‐Si grain sizes and the corresponding TFT performance have been measured for a range of excimer‐laser crystallization fluences near the full‐melt threshold, allowing optimization of the laser‐crystallization process. A Bragg reflector stack has been embedded in the plastic coating layers; its effectiveness in protecting the plastic from the excimer‐laser pulse is described. Finally, we describe a plasma pre‐oxidation step, which has been added to a low‐temperature (<100°C) gate dielectric film deposition process to dramatically improve the electrical properties of the gate dielectric. These processes have been integrated into a complete poly‐Si TFT on plastic fabrication process, which produces PMOS TFTs with mobilities of 66 cm2 /V‐sec, threshold voltages of ?3.5 V, and off currents of approximately 1 pA per micron of gate width.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号