首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This experiment studied the effect of 3 different physical forms of linseed fatty acids (FA) on cow dairy performance, milk FA secretion and composition, and their relationship with methane output. Eight multiparous, lactating Holstein cows were assigned to 1 of 4 dietary treatments in a replicated 4 × 4 Latin square design: a control diet (C) based on corn silage (59%) and concentrate (35%), and the same diet supplemented with whole crude linseed (CLS), extruded linseed (ELS), or linseed oil (LSO) at the same FA level (5% of dietary dry matter). Each experimental period lasted 4 wk. Dry matter intake was not modified with CLS but was lowered with both ELS and LSO (−3.1 and −5.1 kg/d, respectively) compared with C. Milk yield and milk fat content were similar for LSO and ELS but lower than for C and CLS (19.9 vs. 22.3 kg/d and 33.8 vs. 43.2 g/kg, on average, respectively). Compared with diet C, CLS changed the concentrations of a small number of FA; the main effects were decreases in 8:0 to 16:0 and increases in 18:0 and cis-9 18:1. Compared with diet C (and CLS in most cases), LSO appreciably changed the concentrations of almost all the FA measured; the main effects were decreases in FA from 4:0 to 16:0 and increases in 18:0, trans-11 16:1, all cis and trans 18:1 (except trans-11 18:1), and nonconjugated trans 18:2 isomers. The effect of ELS was either intermediate between those of CLS and LSO or similar to LSO with a few significant exceptions: increases in 17:0 iso; 18:3n-3; trans-11 18:1; cis-9, trans-11 conjugated linoleic acid; and trans-11, trans-13 conjugated linoleic acid and a smaller increase in cis-9 18:1. The most positive correlations (r = 0.87 to 0.91) between milk FA concentrations and methane output were observed for saturated FA from 6:0 to 16:0 and for 10:1, and the most negative correlations (r = −0.86 to −0.90) were observed for trans-16+cis-14 18:1; cis-9, trans-13 18:2; trans-11 16:1; and trans-12 18:1. Thus, milk FA profile can be considered a potential indicator of in vivo methane output in ruminants.  相似文献   

2.
A crossover experiment was designed to compare the effects of 2 ways of feeding linseed oil on milk fat fatty acid (FA) composition. Ten lactating goats, trained to keep competent their inborn reticular groove reflex, received a daily dose of linseed oil (38 g/d) either with their solid (concentrate) feed (CON) or emulsified in skim milk and bottle-fed (BOT). Two groups of 5 goats received alternative and successively each of the treatments in two 15-d periods. α-Linolenic acid in milk fat rose up to 13.7% in the BOT versus 1.34% in the CON treatment. The n-6 to n-3 FA ratio was significantly reduced in goats receiving bottle-fed linseed oil (1.49 vs. 0.49). Contents of rumen biohydrogenation intermediates of dietary unsaturated FA were high in milk fat of goats under the CON treatment but low in those in the BOT treatment. These results point to a clear rumen bypass of the bottle-fed linseed oil. This strategy allows obtaining milk fat naturally very rich in n-3 FA and very low in trans FA. Translating this approach into practical farm conditions could enable farmers to produce milk enriched in specific FA.  相似文献   

3.
李羽翡 《中国酿造》2014,(5):150-152
对甘肃产亚麻籽油与其它6种小品种食用油脂肪酸的组成成分进行测定,结果表明,亚麻籽油中α-亚麻酸含量最高(平均值为54.1%),其次是油酸(平均值为24.25%);紫苏油、牡丹籽油、松子油不饱和脂肪酸含量高,其中松子油的单不饱和脂肪酸含量最高,紫苏油的多不饱和脂肪酸含量最高,南瓜籽油二十二碳六烯酸(DHA)平均含量0.106%,御米油二十碳五烯酸(EPA)平均含量0.242%。硬脂酸、棕榈酸、油酸、亚油酸和α-亚麻酸是构成甘肃地产亚麻籽油的特征脂肪酸。甘肃产亚麻籽油的ω-3系脂肪酸与ω-6系多不饱和脂肪酸的比是1.6∶0.4,仅次于紫苏油,是健康饮食的高品质油脂。  相似文献   

4.
Trans-18:1 and 18:2 isomer composition in ruminal fluid during the daily feeding cycle was examined in 3 cows fed a high concentrate diet (35:65) with 5% (DM basis) sunflower oil (SO), 5% linseed oil (LO), or 2.5% fish oil (FO) in a 3 x 3 Latin square with 3 4-wk periods. Grass hay and concentrate mixtures were fed at 0900, 1300, and 1700 h daily. Ruminal fluid was collected at 0900, 1100, 1300, 1500, 1700, 2000, and 0000 h. Feeding SO resulted in the greatest mean concentrations (% of total fatty acids) of trans10,cis12-18:2 and cis9,trans11-18:2. In particular, trans10,cis12-18:2 with SO was greater at 1500 (0.29%), 2000 (0.34%), and 0000 h (0.25%) relative to 0900 h (0.07%). Cis9,trans11-18:2 concentration increased from 0.47% at 0900 h to a peak of 2.06% at 1100 h; it remained greater than the percentage determined at 0900 h at 1300 (1.4%) through 0000 h (1.1%). Concentration of trans11,cis15-18:2 was greatest with LO, ranging from 3.3% (0900 h) to a peak of 11.4% at 2000 h. Mean trans10-18:1 concentration ranked by diet was SO > FO > LO. Peak trans10-18:1 with SO was observed at 1700 h (14.9%) compared with 0900 h (5.1%). Trans11-18:1 did not differ with diet or time. Stearic acid decreased over time with all diets reaching minimum concentrations at 1700 to 2000 h relative to 0900 h. Feeding FO, however, decreased mean 18:0 concentration 4-fold compared with LO or SO. The moderate effect on concentration of trans-18:1 coupled with accumulation of 18:2 intermediates and the decrease of 18:0 over time suggest that oils reduced the biohydrogenation of 18:2 isomers to trans-18:1.  相似文献   

5.
Trans-10,cis-15 18:2 has been recently detected and characterized in digestive contents and meat and adipose tissue of ruminants, but its presence in milk and dairy products is hardly known. The aim of this study was to quantify trans-10,cis-15 18:2 in milk fat, better understand its metabolic origin, and help to elucidate the mechanisms of rumen biohydrogenation when the diet composition might affect ruminal environment. To address these objectives, 16 dairy goats were allocated to 2 simultaneous experiments (2 groups of goats and 2 treatments in each experiment). Experimental treatments consisted of basal diets with the same forage-to-concentrate ratio (33/67) and 2 starch-to-nonforage neutral detergent fiber (NDF) ratios (0.8 and 3.1), which were supplemented or not with 30 g/d of linseed oil for 25 d in a crossover design. Trans-10,cis-15 18:2 contents in milk fat were determined by gas chromatography fitted with an extremely polar capillary column (SLB-IL111). Levels of trans-10,cis-15 18:2 in individual milk fat samples ranged from 0 to 0.2% of total fatty acids, and its content in milk fat increased 8 fold due to linseed oil supplementation, substantiating the predominant role of α-linolenic acid in its formation. The trans-10,cis-15 18:2 levels in milk fat were similar in both experiments, despite the fact starch-to-nonforage NDF ratio of their respective basal diets greatly differed. In conclusion, trans-10,cis-15 18:2 was clearly related to linseed oil supplementation, and its increase in milk fat was comparable when the basal diets were rich in either nonforage NDF or starch.  相似文献   

6.
Effects on fatty acid profiles and milk fat yield due to dietary concentrate and supplemental 18:3n-3 were evaluated in 4 lactating Holstein cows fed a low- (35:65 concentrate:forage; L) or high- (65:35; H) concentrate diet without (LC, HC) added oil or with linseed oil (LCO, HCO) at 3% of DM. A 4 x 4 Latin square with four 4-wk periods was used. Milk yield and dry matter intake averaged 26.7 and 20.2 kg/d, respectively, across treatments. Plasma acetate and beta-hydroxybutyrate decreased, whereas glucose, nonesterified fatty acids, and leptin increased with high-concentrate diets. Milk fat percentage was lower in cows fed high-concentrate diets (2.31 vs. 3.38), resulting in decreases in yield of 11 (HC) and 42% (HCO). Reduced yields of 8:0-16:0 and cis9-18:1 fatty acids accounted for 69 and 17%, respectively, of the decrease in milk fat yield with HC vs. LC (-90 g/d), and for 26 and 33%, respectively, of the decrease with HCO vs. LCO (-400 g/d). Total trans-18:1 yield increased by 25 (HCO) and 59 (LCO) g/d with oil addition. Trans10-18:1 yield was 5-fold greater with high-concentrate diets. Trans11-18:1 increased by 13 (HCO) and 19 (LCO) g/d with oil addition. Trans13+14-18:1 yield increased by 9 (HCO) and 18 (LCO) g/d with linseed oil. Yield of total conjugated linoleic acids (CLA) in milk averaged 6 g/d with LC or HC compared with 14 g/d with LCO or HCO. Cis9,trans11-CLA yield was not affected by concentrate level but increased by 147% in response to oil. Feeding oil increased yields of trans11,cis13-, trans11,trans13-, and trans,trans-CLA, primarily with LCO. Trans10,cis12-CLA yield (average of 0.08 g/d) was not affected by treatments. Yield of trans11,cis15-18:2 was 1 g/d in cows fed LC or HC and 10 g/d with LCO or HCO. Yields of cis9,trans11-18:2, cis9,trans12-18:2, and cis9,trans13-18:2 were positively correlated (r = 0.74 to 0.94) with yields of trans11-18:1, trans12-18:1, and trans13+14-18:1, respectively. Plasma concentrations of biohydrogenation intermediates with concentrate or linseed oil level followed similar changes as those in milk fat. Milk fat depression was observed when HC induced an increase in trans10-18:1 yield. A correlation of 0.84 across 31 comparisons from 13 published studies, including the present one, was found among the increase in percentage of trans10-18:1 in milk fat and decreased milk fat yield. We observed, however, more drastic milk fat depression when HCO increased yields of total trans-18:1, trans11,cis15-18:2, trans isomers of 18:3, and reduced yields of 18:0 plus cis9-18:1.  相似文献   

7.
The aim of this experiment was to compare the effects of increasing amounts of extruded linseed in dairy cow diet on milk fat yield, milk fatty acid (FA) composition, milk fat globule size, and butter properties. Thirty-six Prim’Holstein cows at 104 d in milk were sorted into 3 groups by milk production and milk fat globule size. Three diets were assigned: a total mixed ration (control) consisting of corn silage (70%) and concentrate (30%), or a supplemented ration based on the control ration but where part of the concentrate energy was replaced on a dry matter basis by 2.1% (LIN1) or 4.3% (LIN2) extruded linseed. The increased amounts of extruded linseed linearly decreased milk fat content and milk fat globule size and linearly increased the percentage of milk unsaturated FA, specifically α-linolenic acid and trans FA. Extruded linseed had no significant effect on butter color or on the sensory properties of butters, with only butter texture in the mouth improved. The LIN2 treatment induced a net improvement of milk nutritional properties but also created problems with transforming the cream into butter. The butters obtained were highly spreadable and melt-in-the-mouth, with no pronounced deficiency in taste. The LIN1 treatment appeared to offer a good tradeoff of improved milk FA profile and little effect on butter-making while still offering butters with improved functional properties.  相似文献   

8.
Several in vivo CH4 measurement techniques have been developed but are not suitable for precise and accurate large-scale measurements; hence, proxies for CH4 emissions in dairy cattle have been proposed, including the milk fatty acid (MFA) profile. The aim of the present study was to determine whether recently developed MFA-based prediction equations for CH4 emission are applicable to dairy cows with different diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism and fed diets with and without linseed oil. Data from a crossover design experiment were used, encompassing 2 dietary treatments (i.e., a control diet and a linseed oil diet, with a difference in dietary fat content of 22 g/kg of dry matter) and 24 lactating Holstein-Friesian cows (i.e., 12 cows with DGAT1 KK genotype and 12 cows with DGAT1 AA genotype). Enteric CH4 production was measured in climate respiration chambers and the MFA profile was analyzed using gas chromatography. Observed CH4 emissions were compared with CH4 emissions predicted by previously developed MFA-based CH4 prediction equations. The results indicate that different types of diets (i.e., with or without linseed oil), but not the DGAT1 K232A polymorphism, affect the ability of previously derived prediction equations to predict CH4 emission. However, the concordance correlation coefficient was smaller than or equal to 0.30 for both dietary treatments separately, both DGAT1 genotypes separately, and the complete data set. We therefore concluded that previously derived MFA-based CH4 prediction equations can neither accurately nor precisely predict CH4 emissions of dairy cows managed under strategies differing from those under which the original prediction equations were developed.  相似文献   

9.
10.
羊乳脂肪中脂肪酸成分的气相色谱分析   总被引:3,自引:0,他引:3  
选取广州花都地区的羊乳样品,采用OP乳化剂提取出样品中的脂肪,对其进行甲醋化,用填充柱气相色谱法测定了其中的脂肪酸成分;采用面积归-法确定了主要的脂肪酸组成为乙酸9.48%,丁酸2.08%,已酸1.67%,辛酸3.62%,癸酸4.26%,月桂酸2.34%,豆蔻酸7.42%,十五烷酸0.65%,棕榈酸22.32%,棕榈油酸0.87%,硬脂酸10.04%,油酸23.78%,亚油酸6.54%,亚麻酸2.53%,其他脂肪酸2.30%(均为质量分数),饱和脂肪酸和不饱和脂肪酸之比为1.39:1.  相似文献   

11.
The objective of this study was to assess the effects of dietary supplementation of extruded linseed on animal performance and fatty acid (FA) profile of ewe milk for the production of n-3 FA- and conjugated linoleic acid-enriched cheeses. A Manchega ewe flock (300 animals) receiving a 60:40 forage:concentrate diet was divided into 3 groups supplemented with 0, 6, and 12 g of extruded linseed/100 g of dry matter for the control, low, and high extruded linseed diets, respectively. Bulk and individual milk samples from 5 dairy ewes per group were monitored at 7, 14, 28, 45, and 60 d following supplementation. Manchego cheeses were made with bulk milk from the 3 treatment groups. Milk yield increased in dairy ewes receiving extruded linseed. Milk protein, fat, and total solids contents were not affected by linseed supplementation. Milk contents of α-linolenic acid increased from 0.36 with the control diet to 1.91% total FA with the high extruded linseed diet. Similarly, cis-9 trans-11 C18:2 rose from 0.73 to 2.33% and its precursor in the mammary gland, trans-11 C18:1, increased from 1.55 to 5.76% of total FA. This pattern occurred with no significant modification of the levels of trans-10 C18:1 and trans-10 cis-12 C18:2 FA. Furthermore, the high extruded linseed diet reduced C12:0 (−30%), C14:0 (−15%) and C16:0 (−28%), thus significantly diminishing the atherogenicity index of milk. The response to linseed supplementation was persistently maintained during the entire study. Acceptability attributes of n-3-enriched versus control cheeses ripened for 3 mo were not affected. Therefore, extruded linseed supplementation seems a plausible strategy to improve animal performance and nutritional quality of dairy lipids in milk and cheese from ewes.  相似文献   

12.
This study was undertaken to assess the variability in oil content, oil yield and fatty acid composition of 60 linseed cultivars and to identify suitable accessions for use in future breeding and development endeavours in Ethiopia. Mean oil contents ranged from 291 to 359 g kg?1, while oil yields varied between 1443 and 3276 g m?2. Exotic introductions, especially those from Canada such as CDC‐VG, had higher oil contents than the local cultivars. Thus the introduction of exotic materials should be given more emphasis through germplasm exchange programmes. Unsaturated fatty acids were the major components in the oils, varying significantly (P < 0.01) from 859 to 906 g kg?1, while minor saturated fatty acids were present at 84–119 g kg?1. The contents of oleic, linoleic and linolenic acids were 148–293, 109–161 and 470–591 g kg?1 respectively. Although accessions with variable linolenic acid contents were identified, this variability was insufficient to develop genotypes with less than 20 g kg?1 linolenic acid for cooking oil through conventional crossing and selection methods. Hence mutation techniques and the introduction of exotic lines should be regarded as alternative approaches to obtain linseed genotypes with low linolenic acid contents. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
The effect of supplementation of increasing amounts of extruded linseed in diets based on hay (H; experiment 1) or corn silage (CS; experiment 2) was investigated in regard to dairy performance and the milk fatty acid (FA) composition. In each experiment, 4 lactating multiparous Holstein cows were used in a 4 × 4 Latin square design (28-d periods). The cows were fed a diet (50:50 and 40:60 concentrate:forage ratio for experiments 1 and 2, respectively; dry matter basis) without supplementation (H0 or CS0) or supplemented with 5% (H5 or CS5), 10% (H10 or CS10), or 15% (H15 or CS15) of extruded linseed. Regardless of the forage type, diet supplementation with increasing amounts of extruded linseed had no effect on the dry matter intake, milk yield, or protein content or yield. In contrast, the milk fat content decreased progressively from H0 to H10 diets, and then decreased strongly with the H15 diet in response to increasing amounts of extruded linseed. For CS diets, the milk fat content initially decreased from CS0 to CS10, but then increased with the CS15 diet. For the H diets, the milk saturated FA decreased (−24.1 g/100 g of FA) linearly with increasing amounts of extruded linseed, whereas the milk monounsaturated FA (+19.0 g/100 g), polyunsaturated FA (+4.9 g/100 g), and total trans FA (+14.7 g/100 g) increased linearly. For the CS diets, the extent of the changes in the milk FA composition was generally lower than for the H diets. Milk 12:0 to 16:0 decreased in a similar manner in the 2 experiments with increasing amounts of extruded linseed intake, whereas 18:0 and cis-9 18:1 increased. The response of total trans 18:1 was slightly higher for the CS than H diets. The milk trans-10 18:1 content increased more with the CS than the H diets. The milk cis-9,trans-11 conjugated linoleic acid response to increasing amounts of extruded linseed intake was linear and curvilinear for the H diets, whereas it was only linear for the CS diets. The milk 18:3n-3 percentage increased in a similar logarithmic manner in the 2 experiments. It was concluded that the milk FA composition can be altered by extruded linseed supplementation with increasing concentrations of potentially health-beneficial FA (i.e., oleic acid, 18:3n-3, cis-9,trans-11 conjugated linoleic acid, and odd- and branched-chain FA) and decreasing concentrations of saturated FA. Extruded linseed supplementation increased the milk trans FA percentage.  相似文献   

14.
The effects of varying amounts of linseed oil (LSO) in grazing dairy cows’ diet on milk conjugated linoleic acid (cis-9, trans-11 CLA) were investigated in this study. Twelve Holstein cows in midlactation (150 ± 19 DIM) were placed on alfalfa-based pasture and assigned to 4 treatments using a 4 × 4 Latin square design with 3-wk periods. Treatments were: 1) control grain supplement; 2) control grain supplement containing 170 g of LSO (LSO1); 3) control grain supplement containing 340 g of LSO (LSO2); and 4) control grain supplement containing 510 g of LSO (LSO3). Grain supplements were offered at 7 kg/d. Additional 100 g/d of algae, divided evenly between the 2 feeding times, were added to every treatment diet. Milk samples were collected during the last 3 d of each period and analyzed for chemical and fatty acid composition. Treatments had no effect on milk production (18.9, 18.5, 19.6, and 19.1 kg/d for treatments 1 to 4, respectively). Linseed oil supplementation caused a quadratic increase in milk fat (3.23, 3.44, 3.35, and 3.27% for treatments 1 to 4, respectively) and protein (3.03, 3.19, 3.12, and 3.08%) contents. Concentrations (g/100 g of fatty acids) of milk cis-9, trans-11 CLA (1.12, 1.18, 1.39, and 1.65 for treatments 1 to 4, respectively) and VA (3.39, 3.62, 4.25, and 4.89) linearly increased with LSO supplementations. Results from this trial suggest that the increase in milk cis-9, trans-11 CLA was proportional to the amounts of LSO fed. In conclusion, adding LSO to grazing dairy cow diets can improve the nutritional value of milk without compromising milk composition or cow performance.  相似文献   

15.
利用气相色谱法分析胡麻油中主要脂肪酸的组成及含量,并采用加速氧化法对胡麻油在贮藏过程中主要脂肪酸含量和过氧化值的变化进行分析。结果表明:胡麻油的主要脂肪酸有亚麻酸、亚油酸、油酸、棕榈酸和硬脂酸,其中亚麻酸含量为53.6%;随贮藏时间的延长,胡麻油各不饱和脂肪酸含量下降,且下降程度随不饱和度的增大而增大,过氧化值降低,饱和脂肪酸含量基本不变。  相似文献   

16.
Rumen biohydrogenation kinetics of C18:3n-3 from several chemically or technologically treated linseed products and docosahexaenoic acid (DHA; C22:6n-3) addition to linseed oil were evaluated in vitro. Linseed products evaluated were linseed oil, crushed linseed, formaldehyde treated crushed linseed, sodium hydroxide/formaldehyde treated crushed linseed, extruded whole linseed (2 processing variants), extruded crushed linseed (2 processing variants), micronized crushed linseed, commercially available extruded linseed, lipid encapsulated linseed oil, and DHA addition to linseed oil. Each product was incubated with rumen liquid using equal amounts of supplemented C18:3n-3 and fermentable substrate (freeze-dried total mixed ration) for 0, 0.5, 1, 2, 4, 6, 12, and 24 h using a batch culture technique. Disappearance of C18:3n-3 was measured to estimate the fractional biohydrogenation rate and lag time according to an exponential model and to calculate effective biohydrogenation of C18:3n-3, assuming a fractional passage rate of 0.060/h. Treatments showed no differences in rumen fermentation parameters, including gas production rate and volatile fatty acid concentration. Technological pretreatment (crushing) followed by chemical treatment applied as formaldehyde of linseed resulted in effective protection of C18:3n-3 against biohydrogenation. Additional chemical pretreatment (sodium hydroxide) before applying formaldehyde treatment did not further improve the effectiveness of protection. Extrusion of whole linseed compared with extrusion of crushed linseed was effective in reducing C18:3n-3 biohydrogenation, whereas the processing variants were not different in C18:3n-3 biohydrogenation. Crushed linseed, micronized crushed linseed, lipid encapsulated linseed oil, and DHA addition to linseed oil did not reduce C18:3n-3 biohydrogenation. Compared with the other treatments, docosahexaenoic acid addition to linseed oil resulted in a comparable trans11,cis15-C18:2 biohydrogenation but a lesser trans10+11-C18:1 biohydrogenation. This suggests that addition of DHA in combination with linseed oil was effective only in inhibiting the last step of biohydrogenation from trans10+11-C18:1 to C18:0.  相似文献   

17.
Goat diet supplementation with linseed oil (LO) can be a fruitful technological strategy to enhance the nutritional value of milk fat. The objective of the present study was to determine the effect of LO in a basal diet rich in starch on goat milk fatty acid (FA) profile. The FA contents were monitored exhaustively during 24 h after LO supplementation or elimination by gas chromatography. Rumenic acid, the main conjugated linoleic acid isomer and α-linolenic acid, both related with bioactive properties, significantly rose in milk between 12 and 24 h after the inclusion of LO in the diet. On the contrary, medium-chain saturated FA decreased. Changes in other nutritionally relevant milk FA as well as short term effects caused by dietary LO suppression are discussed.Industrial relevanceFortification of livestock feeds with lipid supplements is a technological approach that has attracted growing attention in order to change milk fatty acid (FA) profile. Enrichment of ruminant diets with linseed oil (LO) increases omega-3 FA and conjugated linoleic acid as well as decreases saturated FA in milk fat, which improves the nutritional value of dairy products. The present study explores the timing of those changes in the first 24 h after LO inclusion or suppression in the diet. We observed that changes of goat milk fat composition occurred for the most part between 12 and 24 h of LO supplementation, while those changes disappeared between 6 and 12 h after LO suppression. These results would be relevant for producers and industrialists in order to establish appropriate milk collection periods which provide an improved FA profile due to LO supplementation.  相似文献   

18.
19.
Several experiments were conducted over the past few years to evaluate the feeding value of flax seed and oil in dairy cow diets. The current meta-analysis and meta-regression was undertaken to assess the overall effect of different forms of flax, as a source of trienoic (cis-9,cis-12,cis-15 18:3) fatty acids (FA), on lactation performance and on transfer efficiency of its constituent n-3 FA from diet to milk fat. Comparisons were first conducted with nonsupplemented controls or with diets containing either saturated (mainly 16:0 or 18:0 or both), monoenoic (mainly cis-9 18:1), or dienoic (mainly cis-9,cis-12 18:2) FA. Results indicate that supplementing flax seed and oil decreased dry matter intake, as well as actual and energy-corrected milk yield without affecting the efficiency of utilization of dietary dry matter or energy as compared with nonsupplemented iso-energetic controls. When compared with the other 3 types of dietary fat evaluated, flax rich in trienoic FA supported a yield of energy-corrected milk similar to supplements rich in saturated, monoenoic, or dienoic FA. Greater milk fat concentration and feed efficiency were observed with saturated supplements. However, milk fat concentration and yield were lower with dienoic FA than with flax supplements. Further analyses were conducted to compare the effect of different forms of flax oil, seed, or fractions of seed. Among the 6 categories evaluated, mechanically processed whole seed (rolled or ground) allowed the greatest yield of energy-corrected milk and the best feed efficiency when compared with free oil, intact or extruded whole seed, protected flax, and flax hulls. Feeding protected flax and flax hulls allowed the greatest milk fat concentration of cis-9,cis-12,cis-15 18:3. Moreover, the greatest transfer efficiencies of this fatty acid from diet to milk were recorded with the same 2 treatments, plus the mechanically processed whole seed. These results make this last category the most suitable treatment, among the 6 flax forms evaluated, to combine optimum lactation performance and protection of flax constituent cis-9,cis-12,cis-15 18:3.  相似文献   

20.
石家庄地区牛乳脂肪中脂肪酸成分的分析   总被引:3,自引:1,他引:3  
选取石家庄地区的牛乳样品,采用OP乳化剂提取出样品中的脂肪,对其进行甲酯化,用填充柱气相色谱法测定了其中的脂肪酸成分;采用面积归一法确定了主要的脂肪酸组成为月桂酸1.415%,豆蔻酸6.735%.十五烷酸0.646%,棕榈酸27.71%,棕榈油酸0.874%,十七烷酸0.46%,硬脂酸17.91%,油酸34.29%.亚油酸4.608%.亚麻酸1.013%,花生酸0.102%(均为质量分数)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号