首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potential barriers around quantum dots (QDs) play a key role in kinetics of photoelectrons. These barriers are always created, when electrons from dopants outside QDs fill the dots. Potential barriers suppress the capture processes of photoelectrons and increase the photoresponse. To directly investigate the effect of potential barriers on photoelectron kinetics, we fabricated several QD structures with different positions of dopants and various levels of doping. The potential barriers as a function of doping and dopant positions have been determined using nextnano3 software. We experimentally investigated the photoresponse to IR radiation as a function of the radiation frequency and voltage bias. We also measured the dark current in these QD structures. Our investigations show that the photoresponse increases ~30 times as the height of potential barriers changes from 30 to 130 meV.  相似文献   

2.
CdTeSe colloidal quantum dot (QD) was used to enhance photon capture in thin film polymer solar cells (TFPSC). The QDs were synthesized in aqueous media from two different precursors. Bulk heterojunction (BHJ) polymer blends composed of P3HT and PCBM were used as an absorber layer of the solar cell to investigate the effect of QDs. Different concentrations of QDs were used in the polymer matrix, which significantly impacted the power conversion efficiency (PCE) of the doped devices. More device performance growth was recorded by employing a small amount of solvent additives to disperse the QDs and increase the polymer's crystallinity in the medium. Hence, the addition of 1, Chloronaphthalene (CN) solvent additive in the QD-doped bulk heterojunction film further enhanced the overall performance of the TFPSC due to improved film morphology that has significantly influenced the charge transport processes. Consequently, the PCE of the solar cell increased by nearly 50% compared to the pristine TFPSC due to the effect of solvent additives.  相似文献   

3.
Hybrid thin film solar cell based on all-inorganic nanoparticles is a new member in the family of photovoltaic devices. In this work, a novel and performance-efficient inorganic hybrid nanostructure with continuous charge transportation and collection channels is demonstrated by introducing CdTe nanotetropods (NTs) and CdSe quantum dots (QDs). Hybrid morphology is characterized, demonstrating an interpenetration and compacted contact of NTs and QDs. Electrical measurements show enhanced charge transfer at the hybrid bulk heterojunction interface of NTs and QDs after ligand exchange which accordingly improves the performance of solar cells. Photovoltaic and light response tests exhibit a combined optic-electric contribution from both CdTe NTs and CdSe QDs through a formation of interpercolation in morphology as well as a type II energy level distribution. The NT and QD hybrid bulk heterojunction is applicable and promising in other highly efficient photovoltaic materials such as PbS QDs.  相似文献   

4.
Series of silver nanoparticles (NPs) embedded CsPbBr3 quantum dots (QDs) glass was synthesized via the melt-quench method. Ag NPs and CsPbBr3 QDs coexist in the TEM image of the Ag-doped glass sample. Photoluminescence (PL) spectra show that the 0.1 molar ratio Ag2O-doped sample had a PL intensity 2.37 times than the undoped sample. This increase is generated by localized surface plasmon resonance coupling between the Ag NPs and CsPbBr3 QDs. Excessive Ag doping weakens the PL intensity due to spectral self-absorption of the Ag NP surface plasmon resonance (SPR). Self-adsorption of SPR is detrimental to luminescence properties because it increases the amount of photogenerated charge carriers, which proceed through nonradiative relaxation pathways. In addition, stability results of Ag NP-doped-CsPbBr3 QD glass show that they have excellent stability. This study on Ag NP-doped-CsPbBr3 QD glass provides a new idea for the future development of perovskite QD optoelectronic devices.  相似文献   

5.
The concept of third-generation photovoltaics is to significantly increase device efficiencies whilst still using thin-film processes and abundant non-toxic materials. A strong potential approach is to fabricate tandem cells using thin-film deposition that can optimise collection of energy in a series of cells with decreasing band gap stacked on top of each other. Quantum dot materials, in which Si quantum dots (QDs) are embedded in a dielectric matrix, offer the potential to tune the effective band gap, through quantum confinement, and allow fabrication of optimised tandem solar cell devices in one growth run in a thin-film process. Such cells can be fabricated by sputtering of thin layers of silicon rich oxide sandwiched between a stoichiometric oxide that on annealing crystallise to form Si QDs of uniform and controllable size. For approximately 2-nm diameter QDs, these result in an effective band gap of 1.8 eV. Introduction of phosphorous or boron during the growth of the multilayers results in doping and a rectifying junction, which demonstrates photovoltaic behaviour with an open circuit voltage (VOC) of almost 500 mV. However, the doping behaviour of P and B in these QD materials is not well understood. A modified modulation doping model for the doping mechanisms in these materials is discussed which relies on doping of a sub-oxide region around the Si QDs.  相似文献   

6.
Chen J  Lei W  Deng WQ 《Nanoscale》2011,3(2):674-677
An efficient photoelectrode is fabricated by sequentially assembling 2.5 nm and 3.5 nm CdSe quantum dots (QDs) onto a TiO2 film. As revealed by UV-vis absorption spectroscopy, two sizes of CdSe QD can be effectively adsorbed on the TiO2 film. With a broader light absorption range and better coverage of CdSe QDs on the TiO2 film, a power conversion efficiency of 1.26% has been achieved for the TiO2/CdSe QD (2.5 nm)/CdSe QD (3.5 nm) cell under the illumination of one Sun (AM 1.5G, 100 mW cm(-2)). Electrochemical impedance spectroscopy shows that the electron lifetime for the device based on TiO2/CdSe QD (2.5 nm)/CdSe QD (3.5 nm) is longer than that for devices based on TiO2/CdSe QD (2.5 nm) and TiO2/CdSe QD (3.5 nm), indicating that the charge recombination at the interface is reduced by sensitizing with two kinds of CdSe QDs.  相似文献   

7.
《Ceramics International》2020,46(3):2940-2948
Tremendous progress has been made in power conversion efficiency (PCE) of thin-film photovoltaics over the past few years, yet most current high-efficient photoactive layer usually contains rare or toxic elements accompanied by expensive and complicated vacuum processes, which increases the cost and limits the scope of the applications in the long run. Here we present a synergistic effect of quantum effect of an earth-abundant and low toxic ultrafine Cu2ZnSnS4 (CZTS) quantum dots (QDs) and low charge recombination in one dimensional TiO2 nanotube arrays for optoelectronic devices. By ligands exchange, the as-obtained ultrafine CZTS QDs have been robustly anchored to a highly ordered TiO2 nanotube arrays (TNAs) to be served as a function layer in a simple QDs sensitized solar cells. Such ultrafine CZTS QDs based solar cells exhibit significant enhancement up to 457% in PCE compared to that of CZTS QDs with larger size. The CZTS QDs functionalized TNAs has also shown excellent charge transport capability with lower recombination rate than QDs sensitized TiO2 nanoparticles and it is expected to be used as a low-cost environment-friendly function layer for various potential optoelectronic applications.  相似文献   

8.
A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells.  相似文献   

9.
InGaN/GaN multilayer quantum dot (QD) structure is a potential type of active regions for yellow-green light-emitting diodes (LEDs). The surface morphologies and crystalline quality of GaN barriers are critical to the uniformity of InGaN QD layers. While GaN barriers were grown in multi-QD layers, we used improved growth parameters by increasing the growth temperature and switching the carrier gas from N2 to H2 in the metal organic vapor phase epitaxy. As a result, a 10-layer InGaN/GaN QD LED is demonstrated successfully. The transmission electron microscopy image shows the uniform multilayer InGaN QDs clearly. As the injection current increases from 5 to 50 mA, the electroluminescence peak wavelength shifts from 574 to 537 nm.  相似文献   

10.
《Ceramics International》2023,49(20):32768-32778
Due to the advantages of tuning the electronic structure and reducing charge carrier recombination, metal doping into semiconductor metal oxides has been considered an efficient method for enhancing photocatalytic activity and photo-induced conductivity. In this paper, we focus on the effect of cobalt doping on the photocatalytic performance and photo-induced conductivity of ZnO QD. It was found that after Co doping, the photocatalytic activity of ZnO QD was remarkably higher than that of undoped ZnO QD when measured with methylene blue (MB) dye. The study showed that the complete degradation of the dye using 5 mol% cobalt doped ZnO QD occurred in just 6 min, which is 4 times faster than that of undoped ZnO QD. The extent of dye mineralization was supported by chemical oxygen demand (COD) study, which revealed that the dye was almost entirely mineralized. Furthermore, the photoconductivity and photosensitivity of 5 mol% doped Co doped ZnO QD were increased by 20 and 7 times, respectively, over that of undoped ZnO QD. The outstanding boost in photocatalytic activity and photoconductivity is caused by the tunable band gap mediated photo response, which increases light harvesting and thus the generation of a large number of electron hole pairs. Another possible explanation is that sub-energy levels formed between the conduction and valence bands act as a trap for electrons and holes, promoting charge separation by limiting photogenerated charge carrier recombination.  相似文献   

11.
《Ceramics International》2023,49(6):8820-8826
The effect of co-sensitization and ZnS passivation on the photovoltaic performance of CdS quantum dot sensitized solar cells (QDSSCs) were investigated. The deposition of CdS, CdSe quantum dots (QD) and ZnS passivation on TiO2 photoanode was carried out by successive ionic layer adsorption and reaction (SILAR) method. CdS/CdSe co-sensitization developed two staggered type-II heterojunctions at TiO2/CdS and CdS/CdSe interfaces and resulted a cascade energy band structure. This suitable band alignment facilitated the double charge transfer mechanism at each heterojunction and transported the electrons easily into the photoanode. The narrow bandgap sensitizers CdS and CdSe significantly improved the potential utilization of solar spectrum with more charge carrier generation. ZnS passivation on QD surface suppressed electrode/electrolyte interfacial charge recombination and facilitated more electron injection from QDs into TiO2 photoanode. The EDAX elemental mapping results inferred that CdS, CdSe and ZnS have efficiently covered the TiO2 surface. TiO2/CdS and CdS/CdSe interfaces and the amorphous nature of ZnS could be verified with HRTEM images. Hence, the co-sensitization and surface passivation played a significant role to enhance the PCE of CdS QDSSC from 1.9% to 4.05%.  相似文献   

12.
A new measure to enhance the performance of InAs quantum dot solar cell is proposed and measured. One monolayer AlAs is deposited on top of InAs quantum dots (QDs) in multistack solar cells. The devices were fabricated by molecular beam epitaxy. In situ annealing was intended to tune the QD density. A set of four samples were compared: InAs QDs without in situ annealing with and without AlAs cap layer and InAs QDs in situ annealed with and without AlAs cap layer. Atomic force microscopy measurements show that when in situ annealing of QDs without AlAs capping layers is investigated, holes and dashes are present on the device surface, while capping with one monolayer AlAs improves the device surface. On unannealed samples, capping the QDs with one monolayer of AlAs improves the spectral response, the open-circuit voltage and the fill factor. On annealed samples, capping has little effect on the spectral response but reduces the short-circuit current, while increasing the open-circuit voltage, the fill factor and power conversion efficiency.  相似文献   

13.
Poly[2-methoxy-5-(2-ethylhexyloxy-p-phenylenevinylene)]/ZnO nanorod hybrid solar cells consisting of PbS quantum dots [QDs] prepared by a chemical bath deposition method were fabricated. An optimum coating of the QDs on the ZnO nanorods could strongly improve the performance of the solar cells. A maximum power conversion efficiency of 0.42% was achieved for the PbS QDs' sensitive solar cell coated by 4 cycles, which was increased almost five times compared with the solar cell without using PbS QDs. The improved efficiency is attributed to the cascade structure formed by the PbS QD coating, which results in enhanced open-circuit voltage and exciton dissociation efficiency.  相似文献   

14.
We review the discovery of localized surface plasmon resonances (LSPRs) in doped semiconductor quantum dots (QDs), an advance that has extended nanoplasmonics to materials beyond the classic gamut of noble metals. The initial demonstrations of near-infrared LSPRs in QDs of heavily self-doped copper chalcogenides and conducting metal oxides are setting the broad stage for this new field. We describe the key properties of QD LSPRs. Although the essential physics of plasmon resonances are similar to that in metal nanoparticles, the attributes of QD LSPRs represent a paradigm shift from metal nanoplasmonics. Carrier doping of quantum dots allows access to tunable LSPRs in the wide frequency range from the THz to the near-infrared. Such composition or carrier density tunability is unique to semiconductor quantum dots and not achievable in metal nanoparticles. Most strikingly, semiconductor quantum dots allow plasmon resonances to be dynamically tuned or switched by active control of carriers. Semiconducting quantum dots thus represent the ideal building blocks for active plasmonics. A number of potential applications are discussed, including the use of plasmonic quantum dots as ultrasmall labels for biomedicine and electrochromic materials, the utility of LSPRs for probing nanoscale charge dynamics in semiconductors, and the exploitation of strong coupling between photons and excitons. Further advances in this field necessitate efforts toward generalizing plasmonic phenomena to a wider range of semiconductors, developing strategies for achieving controlled levels of doping and stabilizing them, investigating the spectroscopy of these systems on a fundamental level, and exploring their integration into optoelectronic devices.  相似文献   

15.
We study the effect of delta-doping on the hole capture probability in ten-period p-type Ge quantum dot photodetectors. The boron concentration in the delta-doping layers is varied by either passivation of a sample in a hydrogen plasma or by direct doping during the molecular beam epitaxy. The devices with a lower doping density is found to exhibit a lower capture probability and a higher photoconductive gain. The most pronounced change in the trapping characteristics upon doping is observed at a negative bias polarity when the photoexcited holes move toward the δ-doping plane. The latter result implies that the δ-doping layers are directly involved in the processes of hole capture by the quantum dots.  相似文献   

16.
Sudhagar P  Asokan K  Ito E  Kang YS 《Nanoscale》2012,4(7):2416-2422
Hierarchical nanostructured titanium dioxide (TiO(2)) clumps were fabricated using electrostatic spray with subsequent nitrogen-ion doping by an ion-implantation technique for improvement of energy conversion efficiency for quantum dot-sensitized solar cells (QDSCs). CdSe quantum dots were directly assembled on the produced N-ion-implanted TiO(2) photoanodes by chemical bath deposition, and their photovoltaic performance was evaluated in a polysulfide electrolyte with a Pt counter electrode. We found that the photovoltaic performance of TiO(2) electrodes was improved by nearly 145% upon N-ion implantation. The efficiency improvement seems to be due to (1) the enhancement of electron transport through the TiO(2) layer by inter-particle necking of primary TiO(2) particles and (2) an increase in the recombination resistance at TiO(2)/QD/electrolyte interfaces by healing the surface states or managing the oxygen vacancies upon N-ion doping. Therefore, N-ion-doped photoanodes offer a viable pathway to develop more efficient QD or dye-sensitized solar cells.  相似文献   

17.
An injectable and self‐healing multifluorescent hydrogel system based on engineered coiled‐coil polypeptide and CdSe@ZnS quantum dots (QDs) is developed. The mechanical properties of the PC10A‐QD hydrogel are able to be tuned by changing the concentrations of PC10A and QDs. The G′ of PC10A hydrogel increases from 800 to 1000 Pa by doping 6 nm oil‐soluble CdSe@ZnS QDs. The PC10A‐QD hydrogel can easily pass through a 26‐gauge needle without clogging. In addition, through interfacial assembly of PC10A polypeptide on the surface of the PC10A‐QD hydrogel, each of these hydrogel can self‐assemble into a multifluorescent hydrogel. This approach for preparation of injectable self‐healing multifluorescent hydrogels is expected to apply in biomedicine.  相似文献   

18.
The usage of semiconductor nanostructures is highly promising for boosting the energy conversion efficiency in photovoltaics technology, but still some of the underlying mechanisms are not well understood at the nanoscale length. Ge quantum dots (QDs) should have a larger absorption and a more efficient quantum confinement effect than Si ones, thus they are good candidate for third-generation solar cells. In this work, Ge QDs embedded in silica matrix have been synthesized through magnetron sputtering deposition and annealing up to 800°C. The thermal evolution of the QD size (2 to 10 nm) has been followed by transmission electron microscopy and X-ray diffraction techniques, evidencing an Ostwald ripening mechanism with a concomitant amorphous-crystalline transition. The optical absorption of Ge nanoclusters has been measured by spectrophotometry analyses, evidencing an optical bandgap of 1.6 eV, unexpectedly independent of the QDs size or of the solid phase (amorphous or crystalline). A simple modeling, based on the Tauc law, shows that the photon absorption has a much larger extent in smaller Ge QDs, being related to the surface extent rather than to the volume. These data are presented and discussed also considering the outcomes for application of Ge nanostructures in photovoltaics.  相似文献   

19.
通过研究不同碱/锌、钐/锌物质的量比制备了分散性良好的Sm掺杂氧化锌量子点(ZnO QDs)。通过紫外可见光谱(UV-vis)、X射线衍射(XRD)、场致发射透射电子显微镜(TEM)、能量色散X射线谱(EDS)、X射线光电子能谱(XPS)对样品做了表征。研究结果表明,n(Zn)∶n(OH-)=1∶1、Sm掺杂量为4%(物质的量分数)时制备的ZnO QDs在383 nm紫外光激发下的荧光发射强度最强。并发现稀土钐离子的掺杂与ZnO QDs的氧空位(OV)形成有关。Sm掺杂后的ZnO QDs的氧空位浓度比未掺杂的高,且ZnO QDs氧空位的浓度越大,其荧光发射强度越强。  相似文献   

20.
Highly uniform InGaN-based quantum dots (QDs) grown on a nanopatterned dielectric layer defined by self-assembled diblock copolymer were performed by metal-organic chemical vapor deposition. The cylindrical-shaped nanopatterns were created on SiN x layers deposited on a GaN template, which provided the nanopatterning for the epitaxy of ultra-high density QD with uniform size and distribution. Scanning electron microscopy and atomic force microscopy measurements were conducted to investigate the QDs morphology. The InGaN/GaN QDs with density up to 8 × 1010 cm-2 are realized, which represents ultra-high dot density for highly uniform and well-controlled, nitride-based QDs, with QD diameter of approximately 22-25 nm. The photoluminescence (PL) studies indicated the importance of NH3 annealing and GaN spacer layer growth for improving the PL intensity of the SiN x -treated GaN surface, to achieve high optical-quality QDs applicable for photonics devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号