首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solar‐driven Fischer–Tropsch synthesis represents an alternative and potentially low‐cost route for the direct production of light olefins from syngas (CO and H2). Herein, a series of novel Co‐based photothermal catalysts with different chemical compositions are successfully fabricated by H2 reduction of ZnCoAl‐layered double‐hydroxide nanosheets at 300–700 °C. Under UV–vis irradiation, the photothermal catalyst prepared at 450 °C demonstrates remarkable CO hydrogenation performance, affording an olefin (C2–4=) selectivity of 36.0% and an olefin/paraffin ratio of 6.1 at a CO conversion of 15.4%. Characterization studies using X‐ray absorption fine structure and high‐resolution transmission electron microscopy reveal that the active catalyst comprises Co and Co3O4 nanoparticles on a ZnO–Al2O3 mixed metal oxide support. Density functional theory calculations further demonstrate that the oxide‐decorated metallic Co nanoparticle heterostructure weakens the further hydrogenation ability of the corresponding Co, leading to the high selectivity to light olefins. This study demonstrates a novel solar‐driven catalyst platform for the production of light olefins via CO hydrogenation.  相似文献   

2.
A series of novel CoFe‐based catalysts are successfully fabricated by hydrogen reduction of CoFeAl layered‐double‐hydroxide (LDH) nanosheets at 300–700 °C. The chemical composition and morphology of the reaction products (denoted herein as CoFe‐x) are highly dependent on the reduction temperature (x). CO2 hydrogenation experiments are conducted on the CoFe‐x catalysts under UV–vis excitation. With increasing LDH‐nanosheet reduction temperature, the CoFe‐x catalysts show a progressive selectivity shift from CO to CH4, and eventually to high‐value hydrocarbons (C2+). CoFe‐650 shows remarkable selectivity toward hydrocarbons (60% CH4, 35% C2+). X‐ray absorption fine structure, high‐resolution transmission electron microscopy, Mössbauer spectroscopy, and density functional theory calculations demonstrate that alumina‐supported CoFe‐alloy nanoparticles are responsible for the high selectivity of CoFe‐650 for C2+ hydrocarbons, also allowing exploitation of photothermal effects. This study demonstrates a vibrant new catalyst platform for harnessing clean, abundant solar‐energy to produce valuable chemicals and fuels from CO2.  相似文献   

3.
The development of an artificial photosynthetic system is a promising strategy to convert solar energy into chemical fuels. Here, a direct Z‐scheme CdS–WO3 photocatalyst without an electron mediator is fabricated by imitating natural photosynthesis of green plants. Photocatalytic activities of as‐prepared samples are evaluated on the basis of photocatalytic CO2 reduction to form CH4 under visible light irradiation. These Z‐scheme‐heterostructured samples show a higher photocatalytic CO2 reduction than single‐phase photocatalysts. An optimized CdS–WO3 heterostructure sample exhibits the highest CH4 production rate of 1.02 μmol h?1 g?1 with 5 mol% CdS content, which exceeds the rates observed in single‐phase WO3 and CdS samples for approximately 100 and ten times under the same reaction condition, respectively. The enhanced photocatalytic activity could be attributed to the formation of a hierarchical direct Z‐scheme CdS–WO3 photocatalyst, resulting in an efficient spatial separation of photo‐induced electron–hole pairs. Reduction and oxidation catalytic centers are maintained in two different regions to minimize undesirable back reactions of the photocatalytic products. The introduction of CdS can enhance CO2 molecule adsorption, thereby accelerating photocatalytic CO2 reduction to CH4. This study provides novel insights into the design and fabrication of high‐performance artificial Z‐scheme photocatalysts to perform photocatalytic CO2 reduction.  相似文献   

4.
Value‐added aromatic monomers such as benzene, toluene, and xylenes (BTX) are very important building‐block chemicals for the production of plastics, polymers, solvents, pesticides, dyes, and adhesives. Syngas‐to‐aromatics (STA) is a very promising approach for the synthesis of aromatic monomers, and is catalyzed via bifunctional catalysts in a single reactor, wherein methanol/dimethyl ether and/or olefins intermediates formed from syngas on metal components are converted into aromatic monomers exclusively on the HZSM‐5 by cascade reactions. Since an optimal Fischer–Tropsch synthesis (FTS) temperature of Fe‐based catalysts is very close to an aromatization temperature of HZSM‐5, Fe‐based catalysts have been frequently used/modified for the synthesis of aromatic monomers from hydrogenation of carbon oxides (CO and CO2). The nature of metal components and amounts of Brönsted acid sites on HZSM‐5, and their mesoporosity and intimacy, significantly alter the selectivity for aromatics by tuning BTX distibution and catalyst stability. Although many developments have been achieved regarding the STA process in recent years, no reviews have been published in this flourishing research area over the last two decades. Here, the recent advances and forthcoming challenges in the progress of syngas (CO+H2) chemistry and hydrogenation of CO2 toward the value‐added aromatic monomers through cascade reactions are highlighted.  相似文献   

5.
Novel structured composite microspheres of metal oxide and nitrogen‐doped graphitic carbon (NGC) have been developed as efficient anode materials for lithium‐ion batteries. A new strategy is first applied to a one‐pot preparation of composite (FeOx‐NGC/Y) microspheres via spray pyrolysis. The FeOx‐NGC/Y composite microspheres have a yolk–shell structure based on the iron oxide material. The void space of the yolk–shell microsphere is filled with NGC. Dicyandiamide additive plays a key role in the formation of the FeOx‐NGC/Y composite microspheres by inducing Ostwald ripening to form a yolk–shell structure based on the iron oxide material. The FeOx‐NGC/Y composite microspheres with the mixed crystal structure of rock salt FeO and spinel Fe3O4 phases show highly superior lithium‐ion storage performances compared to the dense‐structured FeOx microspheres with and without carbon material. The discharge capacities of the FeOx‐NGC/Y microspheres for the 1st and 1000th cycle at 1 A g?1 are 1423 and 1071 mAh g?1, respectively. The microspheres have a reversible discharge capacity of 598 mAh g?1 at an extremely high current density of 10 A g?1. Furthermore, the strategy described in this study is generally applied to multicomponent metal oxide–carbon composite microspheres with yolk–shell structures based on metal oxide materials.  相似文献   

6.
Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal–organic frameworks (MOFs) have attracted much attention as CO2 photoreduction‐related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light‐absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF‐based photocatalysts are discussed here, beginning with the introduction of the characteristics of high‐efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti–O, Zr–O, and Fe–O clusters and functional organic linkers such as amino‐modified, photosensitizer‐functionalized, and electron‐rich conjugated linkers) and three types of MOF‐based composites (metal–MOF, semiconductor–MOF, and photosensitizer–MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF‐based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion.  相似文献   

7.
Inspired by natural photosynthesis, the design of new Z‐scheme photocatalytic systems is very promising for boosting the photocatalytic performance of H2 production and CO2 reduction; however, until now, the direct synthesis of efficient Z‐scheme photocatalysts remains a grand challenge. Herein, it is demonstrated that an interesting Z‐scheme photocatalyst can be constructed by coupling In2O3 and ZnIn2Se4 semiconductors based on theoretical calculations. Experimentally, a class of ultrathin In2O3–ZnIn2Se4 (denoted as In2O3–ZISe) spontaneous Z‐scheme nanosheet photocatalysts for greatly enhancing photocatalytic H2 production is made. Furthermore, Mo atoms are incorporated in the Z‐scheme In2O3–ZISe nanosheet photocatalyst by forming the Mo? Se bond, confirmed by X‐ray photoelectron spectroscopy, in which the formed MoSe2 works as cocatalyst of the Z‐scheme photocatalyst. As a consequence, such a unique structure of In2O3–ZISe–Mo makes it exhibit 21.7 and 232.6 times higher photocatalytic H2 evolution activity than those of In2O3–ZnIn2Se4 and In2O3 nanosheets, respectively. Moreover, In2O3–ZISe–Mo is also very stable for photocatalytic H2 production by showing almost no activity decay for 16 h test. Ultraviolet–visible diffuse reflectance spectra, photoluminescence spectroscopy, transient photocurrent spectra, and electrochemical impedance spectroscopy reveal that the enhanced photocatalytic performance of In2O3–ZISe–Mo is mainly attributed to its widened photoresponse range and effective carrier separation because of its special structure.  相似文献   

8.
Gel formation was realized by adding citric acid to a solution of La(NO3)3·5H2O, Ca(NO3)2·4H2O, and Fe(NO3)2·9H2O. Perovskite-type (La1−xCax)FeO3 (0 ≤ x ≤ 0.2) was synthesized by firing the gel at 500 °C in air for 1 h. The crystallite size (D1 2 1) decreased with increasing x, while the specific surface area was 6.8-9.4 m2/g and independent of x. The XPS measurement of the (La1−xCax)FeO3 surface indicated that the Ca2+ ion content increased with increasing x, while the Fe ion content was independent of x. Catalytic activity for CO oxidation increased with increasing x.  相似文献   

9.
Here, the photocatalytic CO2 reduction reaction (CO2RR) with the selectivity of carbon products up to 100% is realized by completely suppressing the H2 evolution reaction under visible light (λ > 420 nm) irradiation. To target this, plasmonic Au/CdSe dumbbell nanorods enhance light harvesting and produce a plasmon‐enhanced charge‐rich environment; peripheral Cu2O provides rich active sites for CO2 reduction and suppresses the hydrogen generation to improve the selectivity of carbon products. The middle CdSe serves as a bridge to transfer the photocharges. Based on synthesizing these Au/CdSe–Cu2O hierarchical nanostructures (HNSs), efficient photoinduced electron/hole (e?/h+) separation and 100% of CO selectivity can be realized. Also, the 2e?/2H+ products of CO can be further enhanced and hydrogenated to effectively complete 8e?/8H+ reduction of CO2 to methane (CH4), where a sufficient CO concentration and the proton provided by H2O reduction are indispensable. Under the optimum condition, the Au/CdSe–Cu2O HNSs display high photocatalytic activity and stability, where the stable gas generation rates are 254 and 123 µmol g?1 h?1 for CO and CH4 over a 60 h period.  相似文献   

10.
A series of zirconium polyphenolate‐decorated‐(metallo)porphyrin metal–organic frameworks (MOFs), ZrPP‐n (n = 1, 2), featuring infinite ZrIV‐oxo chains linked via polyphenolate groups on four peripheries of eclipse‐arranged porphyrin macrocycles, are successfully constructed through a top–down process from simulation to synthesis. These are the unusual examples of Zr‐MOFs (or MOFs in general) based on phenolic porphyrins, instead of commonly known carboxylate‐based types. Representative ZrPP‐1 not only exhibits strong acid resistance (pH = 1, HCl) but also remains intact even when immersed in saturated NaOH solution (≈20 m ), an exceptionally large range of pH resistance among MOFs. The metallation at the porphyrin core gives rise to materials with enhanced sorption and catalytic properties. In particular, ZrPP‐1‐Co, with precise and uniform distribution of active centers, exhibits not only high CO2 trapping capability (≈90 cm3 g?1 at 1 atm, 273 K, among the highest in Zr‐MOFs) but also high photocatalytic activity for reduction of CO2 into CO (≈14 mmol g?1 h?1) and high selectivity over CH4 (>96.4%) without any cocatalyst under visible‐light irradiation (λ > 420 nm). Given the strong chemical resistance under extreme alkali conditions, these catalysts can be recycled without appreciable loss of activity. The possible mechanism for photocatalytic reduction of CO2‐to‐CO over ZrPP‐1‐Co is also proposed.  相似文献   

11.
The generation of green hydrogen (H2) energy using sunlight is of great significance to solve the worldwide energy and environmental issues. Particularly, photocatalytic H2 production is a highly promising strategy for solar‐to‐H2 conversion. Recently, various heterostructured photocatalysts with high efficiency and good stability have been fabricated. Among them, 2D/2D van der Waals (VDW) heterojunctions have received tremendous attention, since this architecture can promote the interfacial charge separation and transfer and provide massive reactive centers. On the other hand, currently, most photocatalysts are composed of metal elements with high cost, limited reserves, and hazardous environmental impact. Hence, the development of metal‐free photocatalysts is desirable. Here, a novel 2D/2D VDW heterostructure of metal‐free phosphorene/graphitic carbon nitride (g‐C3N4) is fabricated. The phosphorene/g‐C3N4 nanocomposite shows an enhanced visible‐light photocatalytic H2 production activity of 571 µmol h?1 g?1 in 18 v% lactic acid aqueous solution. This improved performance arises from the intimate electronic coupling at the 2D/2D interface, corroborated by the advanced characterizations techniques, e.g., synchrotron‐based X‐ray absorption near‐edge structure, and theoretical calculations. This work not only reports a new metal‐free phosphorene/g‐C3N4 photocatalyst but also sheds lights on the design and fabrication of 2D/2D VDW heterojunction for applications in catalysis, electronics, and optoelectronics.  相似文献   

12.
The electroreduction of CO2 to CO provides a potential way to solve the environmental problems caused by excess fossil fuel utilization. Loading transition metals on metal oxides is an efficient strategy for CO2 electroreduction as well as for reducing metal usage. However, it needs a great potential to overcome the energy barrier to increase CO selectivity. This paper describes how 8.7 wt% gold nanoparticles (NPs) loaded on CeOx nanosheets (NSs) with high Ce3+ concentration effectively decrease the overpotential for CO2 electroreduction. The 3.6 nm gold NPs on CeOx NSs containing 47.3% Ce3+ achieve CO faradaic efficiency of 90.1% at ?0.5 V in 0.1 m KHCO3 solution. Furthermore, the CO2 electroreduction activity shows a strong relationship with the fractions of Ce3+ on Au‐CeOx NSs, which has never been reported. In situ surface‐enhanced infrared absorption spectroscopy shows that Au‐CeOx NSs with high Ce3+ concentration promote CO2 activation and *COOH formation. Theoretical calculations also indicate that the improved performance is attributed to the enhanced *COOH formation on Au‐CeOx NSs with high Ce3+ fraction.  相似文献   

13.
A brown mesoporous TiO2‐x/MCF composite with a high fluorine dopant concentration (8.01 at%) is synthesized by a vacuum activation method. It exhibits an excellent solar absorption and a record‐breaking quantum yield (Φ = 46%) and a high photon–hydrogen energy conversion efficiency (η = 34%,) for solar photocatalytic H2 production, which are all higher than that of the black hydrogen‐doped TiO2 (Φ = 35%, η = 24%). The MCFs serve to improve the adsorption of F atoms onto the TiO2/MCF composite surface, which after the formation of oxygen vacancies by vacuum activation, facilitate the abundant substitution of these vacancies with F atoms. The decrease of recombination sites induced by high‐concentration F doping and the synergistic effect between lattice Ti3+–F and surface Ti3+–F are responsible for the enhanced lifetime of electrons, the observed excellent absorption of solar light, and the photocatalytic production of H2 for these catalysts. The as‐prepared F‐doped composite is an ideal solar light‐driven photocatalyst with great potential for applications ranging from the remediation of environmental pollution to the harnessing of solar energy for H2 production.  相似文献   

14.
The photocatalytic activity and photostability of CdS quantum dot (QD) can be remarkably enhanced by hybridization with Rh‐substituted layered titanate nanosheet even at very low Rh substitution rate (<1%). Mesoporous CdS–Ti(5.2−x)/6Rhx/2O2 nanohybrids are synthesized by a self‐assembly of exfoliated Ti(5.2−x)/6Rhx/2O2 nanosheets with CdS QDs. The partial substitution of Rh3+/Rh4+ ions for Ti4+ ions in layered titanate is quite effective in enhancing an electronic coupling between hybridized CdS and titanate components via the formation of interband Rh 4d states. A crucial role of Rh substituent ion in the internal electron transfer is obviously evidenced from in situ X‐ray absorption spectroscopy showing the elongation of (Rh O) bond under visible light irradiation. This is the first spectroscopic evidence for the important role of substituent ion in the photoinduced electron transfer of hybrid‐type photocatalyst. The CdS–Ti(5.2−x)/6Rhx/2O2 nanohybrids show much higher photocatalytic activity for H2 production and better photostability than do CdS and unsubstituted CdS–TiO2 nanohybrid. This result is ascribable to the enhancement of visible light absorptivity, the depression of electron–hole recombination, and the enhanced hole curing of CdS upon Rh substitution. The present study underscores that the hybridization with composition‐controlled inorganic nanosheet provides a novel efficient methodology to optimize the photo‐related functionalities of semiconductor nanocrystal.  相似文献   

15.
The challenge in the artificial photosynthesis of fossil resources from CO2 by utilizing solar energy is to achieve stable photocatalysts with effective CO2 adsorption capacity and high charge‐separation efficiency. A hierarchical direct Z‐scheme system consisting of urchin‐like hematite and carbon nitride provides an enhanced photocatalytic activity of reduction of CO2 to CO, yielding a CO evolution rate of 27.2 µmol g?1 h?1 without cocatalyst and sacrifice reagent, which is >2.2 times higher than that produced by g‐C3N4 alone (10.3 µmol g?1 h?1). The enhanced photocatalytic activity of the Z‐scheme hybrid material can be ascribed to its unique characteristics to accelerate the reduction process, including: (i) 3D hierarchical structure of urchin‐like hematite and preferable basic sites which promotes the CO2 adsorption, and (ii) the unique Z‐scheme feature efficiently promotes the separation of the electron–hole pairs and enhances the reducibility of electrons in the conduction band of the g‐C3N4. The origin of such an obvious advantage of the hierarchical Z‐scheme is not only explained based on the experimental data but also investigated by modeling CO2 adsorption and CO adsorption on the three different atomic‐scale surfaces via density functional theory calculation. The study creates new opportunities for hierarchical hematite and other metal‐oxide‐based Z‐scheme system for solar fuel generation.  相似文献   

16.
Catalytic transformation of COx (x = 1, 2) with renewable H2 into valuable fuels and chemicals provides practical processes to mitigate the worldwide energy crisis. Fe‐based catalytic materials are widely used for those reactions due to their abundance and low cost. Novel iron carbides are particularly promising catalytic materials among the reported ferrous catalysts. Recently, a series of strategies has been developed for the preparation of iron carbide nanoparticles and their nanocomposites. Control synthesis of FeCx‐based nanomaterials and their catalytic applications in COx hydrogenation and electrochemical hydrogen evolution reaction (HER) are reviewed. The discussion is focused on the unique catalytic activities of iron carbides in COx hydrogenation and HER and the correlation between structure and catalytic performance. Future synthesis and potential catalytic applications of iron carbides are also summarized.  相似文献   

17.
The development of cost‐effective and flexible electrodes is demanding in the field of energy storage. Herein, flexible FexOy/nitrogen‐doped carbon films (FexOy/NC‐MOG) are prepared by facile electrospinning of Fe‐based metal–organic gels (MOGs) followed by high‐temperature carbonization. This approach allows the even mixing of fragile coordination polymers with polyacrylonitrile into flexible films while reserving the structural characteristics of coordination polymers. After thermal treatment, FexOy/NC‐MOG films possess uniformly distributed FexOy nanoparticles and larger accessible surface areas than traditional FexOy‐NC films without MOG. Taking advantage of the unique structure, FexOy/NC‐MOG exhibits a superior rate performance (449.8 mA h g?1 at 5000 mA g–1) and long cycle life (629.3 mA h g–1 after 500 cycles at 1000 mA g–1) when used as additive‐free anodes in lithium‐ion batteries.  相似文献   

18.
Upcoming emission regulations order highly effective NOx‐reduction systems in lean‐burn engines requiring new catalytic materials and integrated control of the reduction process. Thus, new approaches for NOx‐reduction and its monitoring over an On‐Board‐Diagnostic (OBD) system are suggested throughout the globe. A promising attempt is the development of a catalytic system having an integrated NOx‐sensor, based on selective catalytic reduction process and impedance sensors. The study displays the results achieved both with a perovskite type of self‐regenerative catalyst functioning by H2‐reductant and with impedance NOx‐sensors. The catalysts were tested at the temperature range of 150 °C to 360 °C yielding NOx conversion rates of 92 % with high selectivity to N2. Impedance sensors having NiCr2O4‐ and NiO‐SE and PYSZ‐ and FYSZ‐electrolytes are developed and tested at 600 °C under lean atmosphere (5 vol. % O2). Better sensing behaviour towards NO and lower cross‐selectivity towards O2, CO, CO2 and CH4 have been observed with sensors having NiO‐SE.  相似文献   

19.
Controlled synthesis of highly efficient, stable, and cost‐effective oxygen reaction electrocatalysts with atomically‐dispersed Me–Nx–C active sites through an effective strategy is highly desired for high‐performance energy devices. Herein, based on regenerated silk fibroin dissolved in ferric chloride and zinc chloride aqueous solution, 2D porous carbon nanosheets with atomically‐dispersed Fe–Nx–C active sites and very large specific surface area (≈2105 m2 g?1) are prepared through a simple thermal treatment process. Owing to the 2D porous structure with large surface area and atomic dispersion of Fe–Nx–C active sites, the as‐prepared silk‐derived carbon nanosheets show superior electrochemical activity toward the oxygen reduction reaction with a half‐wave potential (E1/2) of 0.853 V, remarkable stability with only 11 mV loss in E1/2 after 30 000 cycles, as well as good catalytic activity toward the oxygen evolution reaction. This work provides a practical and effective approach for the synthesis of high‐performance oxygen reaction catalysts towards advanced energy materials.  相似文献   

20.
Searching for highly efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) using nonnoble metal‐based catalysts is essential for the development of many energy conversion systems, including rechargeable fuel cells and metal–air batteries. Here, Co9–xFexS8/Co,Fe‐N‐C hybrids wrapped by reduced graphene oxide (rGO) (abbreviated as S‐Co9–xFexS8@rGO) are synthesized through a semivulcanization and calcination method using graphene oxide (GO) wrapped bimetallic zeolite imidazolate framework (ZIF) Co,Fe‐ZIF (CoFe‐ZIF@GO) as precursors. Benefiting from the synergistic effect of OER active CoFeS and ORR active Co,Fe‐N‐C in a single component, as well as high dispersity and enhanced conductivity derived from rGO coating and Fe‐doping, the obtained S‐Co9–xFexS8@rGO‐10 catalyst shows an ultrasmall overpotential of ≈0.29 V at 10 mA cm?2 in OER and a half‐wave potential of 0.84 V in ORR, combining a superior oxygen electrode activity of ≈0.68 V in 0.1 m KOH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号