首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The rapid advancements of wearable electronics have caused a paradigm shift in consumer electronics, and the emerging development of stretchable electronics opens a new spectrum of applications for electronic systems. Playing a critical role as the power sources for independent electronic systems, energy harvesters with high flexibility or stretchability have been the focus of research efforts over the past decade. A large number of the flexible energy harvesters developed can only operate at very low strain level (≈0.1%), and their limited flexibility impedes their application in wearable or stretchable electronics. Here, the development of highly flexible and stretchable (stretchability >15% strain) energy harvesters is reviewed with emphasis on strategies of materials synthesis, device fabrication, and integration schemes for enhanced flexibility and stretchability. Due to their particular potential applications in wearable and stretchable electronics, energy‐harvesting devices based on piezoelectricity, triboelectricity, thermoelectricity, and dielectric elastomers have been largely developed and the progress is summarized. The challenges and opportunities of assembly and integration of energy harvesters into stretchable systems are also discussed.  相似文献   

2.
Research on wearable electronic devices that can be directly integrated into daily textiles or clothes has been explosively grown holding great potential for various practical wearable applications. These wearable electronic devices strongly demand 1D electronic devices that are light–weight, weavable, highly flexible, stretchable, and adaptable to comport to frequent deformations during usage in daily life. To this end, the development of 1D electrodes with high stretchability and electrical performance is fundamentally essential. Herein, the recent process of 1D stretchable electrodes for wearable and textile electronics is described, focusing on representative conductive materials, fabrication techniques for 1D stretchable electrodes with high performance, and designs and applications of various 1D stretchable electronic devices. To conclude, discussions are presented regarding limitations and perspectives of current materials and devices in terms of performance and scientific understanding that should be considered for further advances.  相似文献   

3.
Flexible and stretchable electronics represent today's cutting‐edge electronic technologies. As the most‐fundamental component of electronics, the thin‐film electrode remains the research frontier due to its key role in the successful development of flexible and stretchable electronic devices. Stretchability, however, is generally more challenging to achieve than flexibility. Stretchable electronic devices demand, above all else, that the thin‐film electrodes have the capacity to absorb a large level of strain (>>1%) without obvious changes in their electrical performance. This article reviews the progress in strategies for obtaining highly stretchable thin‐film electrodes. Applications of stretchable thin‐film electrodes fabricated via these strategies are described. Some perspectives and challenges in this field are also put forward.  相似文献   

4.
Skin‐like energy devices can be conformally attached to the human body, which are highly desirable to power soft wearable electronics in the future. Here, a skin‐like stretchable fuel cell based on ultrathin gold nanowires (AuNWs) and polymerized high internal phase emulsions (polyHIPEs) scaffolds is demonstrated. The polyHIPEs can offer a high porosity of 80% yet with an overall thickness comparable to human skin. Upon impregnation with electronic inks containing ultrathin (2 nm in diameter) and ultrahigh aspect‐ratio (>10 000) gold nanowires, skin‐like strain‐insensitive stretchable electrodes are successfully fabricated. With such designed strain‐insensitive electrodes, a stretchable fuel cell is fabricated by using AuNWs@polyHIPEs, platinum (Pt)‐modified AuNWs@polyHIPEs, and ethanol as the anode, cathode, and fuel, respectively. The resulting epidermal fuel cell can be patterned and transferred onto skin as “tattoos” yet can offer a high power density of 280 µW cm?2 and a high durability (>90% performance retention under stretching, compression, and twisting). The results presented here demonstrate that this skin‐thin, porous, yet stretchable electrode is essentially multifunctional, simultaneously serving as a current collector, an electrocatalyst, and a fuel host, indicating potential applications to power future soft wearable 2.0 electronics for remote healthcare and soft robotics.  相似文献   

5.
Ultrathin flexible electronic devices have been attracting substantial attention for biomonitoring, display, wireless communication, and many other ubiquitous applications. In this article, organic robust redox‐active polymer/carbon nanotube hybrid nanosheets with thickness of just 100 nm are reported as power sources for ultrathin devices conformable to skin. Regardless of the extreme thinness of the electrodes, a moderately large current density of 0.4 mA cm?2 is achieved due to the high output of the polymers (>10 A g?1). For the first time, the use of mechanically robust yet intrinsically soft electrodes and polymer nanosheet sealing leads to the fabrication of rechargeable devices with only 1‐µm thickness and even with stretchable properties.  相似文献   

6.
The ever‐growing overlap between stretchable electronic devices and wearable healthcare applications is igniting the discovery of novel biocompatible and skin‐like materials for human‐friendly stretchable electronics fabrication. Amongst all potential candidates, hydrogels with excellent biocompatibility and mechanical features close to human tissues are constituting a promising troop for realizing healthcare‐oriented electronic functionalities. In this work, based on biocompatible and stretchable hydrogels, a simple paradigm to prototype stretchable electronics with an embedded three‐dimensional (3D) helical conductive layout is proposed. Thanks to the 3D helical structure, the hydrogel electronics present satisfactory mechanical and electrical robustness under stretch. In addition, reusability of stretchable electronics is realized with the proposed scenario benefiting from the swelling property of hydrogel. Although losing water would induce structure shrinkage of the hydrogel network and further undermine the function of hydrogel in various applications, the worn‐out hydrogel electronics can be reused by simply casting it in water. Through such a rehydration procedure, the dehydrated hydrogel can absorb water from the surrounding and then the hydrogel electronics can achieve resilience in mechanical stretchability and electronic functionality. Also, the ability to reflect pressure and strain changes has revealed the hydrogel electronics to be promising for advanced wearable sensing applications.  相似文献   

7.
Due to the natural biodegradability and biocompatibility, silk fibroin (SF) is one of the ideal platforms for on‐skin and implantable electronic devices. However, the development of SF‐based electronics is still at a preliminary stage due to the SF film intrinsic brittleness as well as the solubility in water, which prevent the fabrication of SF‐based electronics through traditional techniques. In this article, a flexible and stretchable silver nanofibers (Ag NFs)/SF based electrode is synthesized through water‐free procedures, which demonstrates outstanding performance, i.e., low sheet resistance (10.5 Ω sq?1), high transmittance (>90%), excellent stability even after bending cycles >2200 times, and good extensibility (>60% stretching). In addition, on the basis of such advanced (Ag NFs)/SF electrode, a flexible and tactile sensor is further fabricated, which can simultaneously detect pressure and strain signals with a large monitoring window (35 Pa–700 kPa). Besides, this sensor is air‐permeable and inflammation‐free, so that it can be directly laminated onto human skins for long‐term health monitoring. Considering the biodegradable and skin‐comfortable features, this sensor may become promising to find potential applications in on‐skin or implantable health‐monitoring devices.  相似文献   

8.
Printing technology can be used for manufacturing stretchable electrodes, which represent essential parts of wearable devices requiring relatively high degrees of stretchability and conductivity. In this work, a strategy for fabricating printable and highly stretchable conductors are proposed by transferring printed Ag ink onto stretchable substrates comprising Ecoflex elastomer and tough hydrogel layers using a water‐soluble tape. The elastic modulus of the produced hybrid film is close to that of the hydrogel layer, since the thickness of Ecoflex elastomer film coated on hydrogel is very thin (30 µm). Moreover, the fabricated conductor on hybrid film is stretched up to 1780% strain. The described transfer method is simpler than other techniques utilizing elastomer stamps or sacrificial layers and enables application of printable electronics to the substrates with low elastic moduli (such as hydrogels). The integration of printed electronics with skin‐like low‐modulus substrates can be applied to make wearable devices more comfortable for human skin.  相似文献   

9.
The development of methods for the 3D printing of multifunctional devices could impact areas ranging from wearable electronics and energy harvesting devices to smart prosthetics and human–machine interfaces. Recently, the development of stretchable electronic devices has accelerated, concomitant with advances in functional materials and fabrication processes. In particular, novel strategies have been developed to enable the intimate biointegration of wearable electronic devices with human skin in ways that bypass the mechanical and thermal restrictions of traditional microfabrication technologies. Here, a multimaterial, multiscale, and multifunctional 3D printing approach is employed to fabricate 3D tactile sensors under ambient conditions conformally onto freeform surfaces. The customized sensor is demonstrated with the capabilities of detecting and differentiating human movements, including pulse monitoring and finger motions. The custom 3D printing of functional materials and devices opens new routes for the biointegration of various sensors in wearable electronics systems, and toward advanced bionic skin applications.  相似文献   

10.
The use of liquid metals based on gallium for soft and stretchable electronics is discussed. This emerging class of electronics is motivated, in part, by the new opportunities that arise from devices that have mechanical properties similar to those encountered in the human experience, such as skin, tissue, textiles, and clothing. These types of electronics (e.g., wearable or implantable electronics, sensors for soft robotics, e‐skin) must operate during deformation. Liquid metals are compelling materials for these applications because, in principle, they are infinitely deformable while retaining metallic conductivity. Liquid metals have been used for stretchable wires and interconnects, reconfigurable antennas, soft sensors, self‐healing circuits, and conformal electrodes. In contrast to Hg, liquid metals based on gallium have low toxicity and essentially no vapor pressure and are therefore considered safe to handle. Whereas most liquids bead up to minimize surface energy, the presence of a surface oxide on these metals makes it possible to pattern them into useful shapes using a variety of techniques, including fluidic injection and 3D printing. In addition to forming excellent conductors, these metals can be used actively to form memory devices, sensors, and diodes that are completely built from soft materials. The properties of these materials, their applications within soft and stretchable electronics, and future opportunities and challenges are considered.  相似文献   

11.
Recent interest in flexible electronics has led to a paradigm shift in consumer electronics, and the emergent development of stretchable and wearable electronics is opening a new spectrum of ubiquitous applications for electronics. Organic electronic materials, such as π‐conjugated small molecules and polymers, are highly suitable for use in low‐cost wearable electronic devices, and their charge‐carrier mobilities have now exceeded that of amorphous silicon. However, their commercialization is minimal, mainly because of weaknesses in terms of operational stability, long‐term stability under ambient conditions, and chemical stability related to fabrication processes. Recently, however, many attempts have been made to overcome such instabilities of organic electronic materials. Here, an overview is provided of the strategies developed for environmentally robust organic electronics to overcome the detrimental effects of various critical factors such as oxygen, water, chemicals, heat, and light. Additionally, molecular design approaches to π‐conjugated small molecules and polymers that are highly stable under ambient and harsh conditions are explored; such materials will circumvent the need for encapsulation and provide a greater degree of freedom using simple solution‐based device‐fabrication techniques. Applications that are made possible through these strategies are highlighted.  相似文献   

12.
The concept of realizing electronic applications on elastically stretchable “skins” that conform to irregularly shaped surfaces is revolutionizing fundamental research into mechanics and materials that can enable high performance stretchable devices. The ability to operate electronic devices under various mechanically stressed states can provide a set of unique functionalities that are beyond the capabilities of conventional rigid electronics. Here, a distinctive microtectonic effect enabled oxygen‐deficient, nanopatterned zinc oxide (ZnO) thin films on an elastomeric substrate are introduced to realize large area, stretchable, transparent, and ultraportable sensors. The unique surface structures are exploited to create stretchable gas and ultraviolet light sensors, where the functional oxide itself is stretchable, both of which outperform their rigid counterparts under room temperature conditions. Nanoscale ZnO features are embedded in an elastomeric matrix function as tunable diffraction gratings, capable of sensing displacements with nanometre accuracy. These devices and the microtectonic oxide thin film approach show promise in enabling functional, transparent, and wearable electronics.  相似文献   

13.
Flexible fabric biosensors can find promising applications in wearable electronics. However, high‐performance fabric biosensors have been rarely reported due to many special requirements in device fabrication. Here, the preparation of organic electrochemical transistors (OECTs) on Nylon fibers is reported. By introducing metal/conductive polymer multilayer electrodes on the fibers, the OECTs show very stable performance during bending tests. The devices with functionalized gates are successfully used as various biosensors with high sensitivity and selectivity. The fiber‐based OECTs are woven together with cotton yarns successfully by using a conventional weaving machine, resulting in flexible and stretchable fabric biosensors with high performance. The fabric sensors show much more stable signals in the analysis of moving aqueous solutions than planar devices due to a capillary effect in fabrics. The fabric devices are integrated in a diaper and remotely operated by using a mobile phone, offering a unique platform for convenient wearable healthcare monitoring.  相似文献   

14.
Stretchable single‐crystalline GaAs nanoribbons and stretchable electronic devices fabricated with these ribbons are reported on p. 2857 by Sun, Rogers, and co‐workers. The inside cover shows an array of ‘wavy' GaAs nanoribbons (background) sitting on an elastomeric poly(dimethylsiloxane) (PDMS) support. Wavy and buckled ribbons integrated with metal electrodes (foreground inset) enable high‐performance, fully stretchable electronics, i.e., metal–semiconductor field‐effect transistors.  相似文献   

15.
Stretchable electronics are essential for the development of intensely packed collapsible and portable electronics, wearable electronics, epidermal and bioimplanted electronics, 3D surface compliable devices, bionics, prosthesis, and robotics. However, most stretchable devices are currently based on inorganic electronics, whose high cost of fabrication and limited processing area make it difficult to produce inexpensive, large‐area devices. Therefore, organic stretchable electronics are highly attractive due to many advantages over their inorganic counterparts, such as their light weight, flexibility, low cost and large‐area solution‐processing, the reproducible semiconductor resources, and the easy tuning of their properties via molecular tailoring. Among them, stretchable organic semiconductor devices have become a hot and fast‐growing research field, in which great advances have been made in recent years. These fantastic advances are summarized here, focusing on stretchable organic field‐effect transistors, light‐emitting devices, solar cells, and memory devices.  相似文献   

16.
Stretchable energy‐storage devices receive considerable attention due to their promising applications in future wearable technologies. However, they currently suffer from many problems, including low utility of active materials, limited multidirectional stretchability, and poor stability under stretched conditions. In addition, most proposed designs use one or more rigid components that fail to meet the stretchability requirement for the entire device. Here, an all‐stretchable‐component sodium‐ion full battery based on graphene‐modified poly(dimethylsiloxane) sponge electrodes and an elastic gel membrane is developed for the first time. The battery exhibits reasonable electrochemical performance and robust mechanical deformability; its electrochemical characteristics can be well‐maintained under many different stretched conditions and after hundreds of stretching–release cycles. This novel design integrating all stretchable components provides a pathway toward the next generation of wearable energy devices in modern electronics.  相似文献   

17.
Extremely soft and thin electrodes with high skin conformability have potential applications in wearable devices for personal healthcare. Here, a submicrometer thick, highly robust, and conformable nanonetwork epidermal electrode (NEE) is reported. Electrospinning of polyamide nanofibers and electrospraying of silver nanowires are simultaneously performed to form a homogeneously convoluted network in a nonwoven way. For a 125 nm thick NEE, a low sheet resistance of ≈4 Ω sq?1 with an optical transmittance of ≈82% is achieved. Due to the nanofiber‐based scaffold that undertakes most of the stress during deformation, the electric resistance of the NEE shows very little variation; less than 1.2% after 50 000 bending cycles. The NEE can form a fully conformal contact to human skin without additional adhesives, and the NEE shows a contact impedance that is over 50% lower than what is found in commercial gel electrodes. Due to conformal contact even under deformation, the NEE proves to be a stable, robust, and comfortable approach for measuring electrocardiogram signals, especially when a subject is in motion. These features make the NEE promising for use in the ambulatory measurement of physiological signals for healthcare applications.  相似文献   

18.
With the rapid development of wearable smart devices,many researchershave carried out in-depth research on the stretchable electrodes.As one of the corecomponents for electronics,the electrode mainly transfers the electrons,which plays animportant role in driving the various electrical devices.The key to the research for thestretchable electrode is to maintain the excellent electrical properties or exhibit theregular conductive change when subjected to large tensile deformation.This articleoutlines the recent progress of stretchable electrodes and gives a comprehensiveintroduction to the structures,materials,and applications,including supercapacitors,lithium-ion batteries,organic light-emitting diodes,smart sensors,and heaters.Theperformance comparison of various stretchable electrodes was proposed to clearly showthe development challenges in this field.We hope that it can provide a meaningfulreference for realizing more sensitive,smart,and low-cost wearable electrical devices inthe near future.  相似文献   

19.
Recent advances in mechanics and materials provide routes to develop stretchable electronics that offer performance of conventional wafer-based devices but with the ability to be deformed to arbitrary shape. Many new applications become possible ranging from electronic eye cameras to wearable electronics, to bio-integrated therapeutic devices. This paper reviews mechanics of stretchable electronics in terms of two main forms of stretchable designs. One is wavy design, which can provide one-dimensional stretchability. The other is island-bridge design, which can be stretched in all directions. Mechanics models and their comparisons to experiments and finite element simulations are reviewed for these two designs. The results provide design guidelines for the development of stretchable electronics.  相似文献   

20.
Wearable electronics have revolutionized the way physiological parameters are sensed, detected, and monitored. In recent years, advances in flexible and stretchable hybrid electronics have created emergent properties that enhance the compliance of devices to our skin. With their unobtrusive attributes, skin conformable sensors enable applications toward real-time disease diagnosis and continuous healthcare monitoring. Herein, critical perspectives of flexible hybrid electronics toward the future of digital health monitoring are provided, emphasizing its role in physiological sensing. In particular, the strategies within the sensor composition to render flexibility and stretchability while maintaining excellent sensing performance are considered. Next, novel approaches to the functionalization of the sensor for physical or biochemical stimuli are extensively covered. Subsequently, wearable sensors measuring physical parameters such as strain, pressure, temperature, as well as biological changes in metabolites and electrolytes are reported. Finally, their implications toward early disease detection and monitoring are discussed, concluding with a future perspective into the challenges and opportunities in emerging wearable sensor designs for the next few years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号