首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next‐generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short‐circuit and thermal runaway of the rechargeable batteries. Herein, a dual‐layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual‐layered feature with organic components (ROCO2Li and ROLi) on the top and abundant inorganic components (Li2CO3 and LiF) in the bottom. The dual‐layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite‐free Li metal anode. This work demonstrates the concept of rational construction of dual‐layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes.  相似文献   

2.
Lithium metal is considered as the most promising anode material due to its high theoretical specific capacity and the low electrochemical reduction potential. However, severe dendrite problems have to be addressed for fabricating stable and rechargeable batteries (e.g., lithium–iodine batteries). To fabricate a high‐performance lithium–iodine (Li–I2) battery, a 3D stable lithium metal anode is prepared by loading of molten lithium on carbon cloth doped with nitrogen and phosphorous. Experimental observations and theoretical calculation reveal that the N,P codoping greatly improves the lithiophilicity of the carbon cloth, which not only enables the uniform loading of molten lithium but also facilitates reversible lithium stripping and plating. Dendrites formation can thus be significantly suppressed at a 3D lithium electrode, leading to stable voltage profiles over 600 h at a current density of 3 mA cm?2. A fuel cell with such an electrode and a lithium–iodine cathode shows impressive long‐term stability with a capacity retention of around 100% over 4000 cycles and enhanced high‐rate capability. These results demonstrate the promising applications of 3D stable lithium metal anodes in next‐generation rechargeable batteries.  相似文献   

3.
Metallic lithium (Li) is a promising anode material for next‐generation rechargeable batteries. However, the dendrite growth of Li and repeated formation of solid electrolyte interface during Li plating and stripping result in low Coulombic efficiency, internal short circuits, and capacity decay, hampering its practical application. In the development of stable Li metal anode, the current collector is recognized as a critical component to regulate Li plating. In this work, a lithiophilic Cu‐CuO‐Ni hybrid structure is synthesized as a current collector for Li metal anodes. The low overpotential of CuO for Li nucleation and the uniform Li+ ion flux induced by the formation of Cu nanowire arrays enable effective suppression of the growth of Li dendrites. Moreover, the surface Cu layer can act as a protective layer to enhance structural durability of the hybrid structure in long‐term running. As a result, the Cu‐CuO‐Ni hybrid structure achieves a Coulombic efficiency above 95% for more than 250 cycles at a current density of 1 mA cm?2 and 580 h (290 cycles) stable repeated Li plating and stripping in a symmetric cell.  相似文献   

4.
Dendrite and interfacial reactions have affected zinc (Zn) metal anodes for rechargeable batteries many years. Here, these obstacles are bypassed via adopting an intrinsically safe trimethyl phosphate (TMP)‐based electrolyte to build a stable Zn anode. Along with cycling, pristine Zn foil is gradually converted to a graphene‐analogous deposit via TMP surfactant and a Zn phosphate molecular template. This novel Zn anode morphology ensures long‐term reversible plating/stripping performance over 5000 h, a rate capability of 5 mA cm?2, and a remarkably high Coulombic efficiency (CE) of ≈99.57% without dendrite formation. As a proof‐of‐concept, a Zn–VS2 full cell demonstrates an ultralong lifespan, which provides an alternative for electrochemical energy storage devices.  相似文献   

5.
Nanoscale surface‐engineering plays an important role in improving the performance of battery electrodes. Nb2O5 is one typical model anode material with promising high‐rate lithium storage. However, its modest reaction kinetics and low electrical conductivity obstruct the efficient storage of larger ions of sodium or potassium. In this work, partially surface‐amorphized and defect‐rich black niobium oxide@graphene (black Nb2O5?x@rGO) nanosheets are designed to overcome the above Na/K storage problems. The black Nb2O5?x@rGO nanosheets electrodes deliver a high‐rate Na and K storage capacity (123 and 73 mAh g?1, respectively at 3 A g?1) with long‐term cycling stability. Besides, both Na‐ion and K‐ion full batteries based on black Nb2O5?x@rGO nanosheets anodes and vanadate‐based cathodes (Na0.33V2O5 and K0.5V2O5 for Na‐ion and K‐ion full batteries, respectively) demonstrate promising rate and cycling performance. Notably, the K‐ion full battery delivers higher energy and power densities (172 Wh Kg?1 and 430 W Kg?1), comparable to those reported in state‐of‐the‐art K‐ion full batteries, accompanying with a capacity retention of ≈81.3% over 270 cycles. This result on Na‐/K‐ion batteries may pave the way to next‐generation post‐lithium batteries.  相似文献   

6.
Lithium metal is an ultimate anode in “next‐generation” rechargeable batteries, such as Li–sulfur batteries and Li–air (Li–O2) batteries. However, uncontrollable dendritic Li growth and water attack have prevented its practical applications, especially for open‐system Li–O2 batteries. Here, it is reported that the issues can be addressed via the facile process of immersing the Li metal in organic GeCl4–THF steam for several minutes before battery assembly. This creates a 1.5 µm thick protection layer composed of Ge, GeOx, Li2CO3, LiOH, LiCl, and Li2O on Li surface that allows stable cycling of Li electrodes both in Li‐symmetrical cells and Li–O2 cells, especially in “moist” electrolytes (with 1000–10 000 ppm H2O) and humid O2 atmosphere (relative humidity (RH) of 45%). This work illustrates a simple and effective way for the unfettered development of Li‐metal‐based batteries.  相似文献   

7.
The pursuit for high‐energy‐density batteries has inspired the resurgence of metallic lithium (Li) as a promising anode, yet its practical viability is restricted by the uncontrollable Li dendrite growth and huge volume changes during repeated cycling. Herein, a new 3D framework configured with Mo2N‐mofidied carbon nanofiber (CNF) architecture is established as a Li host via a facile fabrication method. The lithiophilic Mo2N acts as a homogeneously pre‐planted seed with ultralow Li nucleation overpotential, thus spatially guiding a uniform Li nucleation and deposition in the matrix. The conductive CNF skeleton effectively homogenizes the current distribution and Li‐ion flux, further suppressing Li‐dendrite formation. As a result, the 3D hybrid Mo2N@CNF structure facilitates a dendrite‐free morphology with greatly alleviated volume expansion, delivering a significantly improved Coulombic efficiency of ≈99.2% over 150 cycles at 4 mA cm?2. Symmetric cells with Mo2N@CNF substrates stably operate over 1500 h at 6 mA cm?2 for 6 mA h cm?2. Furthermore, full cells paired with LiNi0.8Co0.1Mn0.1O2 (NMC811) cathodes in conventional carbonate electrolytes achieve a remarkable capacity retention of 90% over 150 cycles. This work sheds new light on the facile design of 3D lithiophilic hosts for dendrite‐free lithium‐metal anodes.  相似文献   

8.
Bendable energy‐storage systems with high energy density are demanded for conformal electronics. Lithium‐metal batteries including lithium–sulfur and lithium–oxygen cells have much higher theoretical energy density than lithium‐ion batteries. Reckoned as the ideal anode, however, Li has many challenges when directly used, especially its tendency to form dendrite. Under bending conditions, the Li‐dendrite growth can be further aggravated due to bending‐induced local plastic deformation and Li‐filaments pulverization. Here, the Li‐metal anodes are made bending tolerant by integrating Li into bendable scaffolds such as reduced graphene oxide (r‐GO) films. In the composites, the bending stress is largely dissipated by the scaffolds. The scaffolds have increased available surface for homogeneous Li plating and minimize volume fluctuation of Li electrodes during cycling. Significantly improved cycling performance under bending conditions is achieved. With the bending‐tolerant r‐GO/Li‐metal anode, bendable lithium–sulfur and lithium–oxygen batteries with long cycling stability are realized. A bendable integrated solar cell–battery system charged by light with stable output and a series connected bendable battery pack with higher voltage is also demonstrated. It is anticipated that this bending‐tolerant anode can be combined with further electrolytes and cathodes to develop new bendable energy systems.  相似文献   

9.
The key bottlenecks hindering the practical implementations of lithium‐metal anodes in high‐energy‐density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In principle, these problems can be mitigated or even solved by loading lithium into a high‐surface‐area, conductive, and lithiophilic porous scaffold. However, a suitable material that can synchronously host a large loading amount of lithium and endure a large current density has not been achieved. Here, a lithiophilic 3D nanoporous nitrogen‐doped graphene as the sought‐after scaffold material for lithium anodes is reported. The high surface area, large porosity, and high conductivity of the nanoporous graphene concede not only dendrite‐free stripping/plating but also abundant open space accommodating volume fluctuations of lithium. This ingenious scaffold endows the lithium composite anode with a long‐term cycling stability and ultrahigh rate capability, significantly improving the charge storage performance of high‐energy‐density rechargeable lithium batteries.  相似文献   

10.
Rational synthesis of flexible electrodes is crucial to rapid growth of functional materials for energy‐storage systems. Herein, a controllable fabrication is reported for the self‐supported structure of CuCo2O4 nanodots (≈3 nm) delicately inserted into N‐doped carbon nanofibers (named as 3‐CCO@C); this composite is first used as binder‐free anode for sodium‐ion batteries (SIBs). Benefiting from the synergetic effect of ultrasmall CuCo2O4 nanoparticles and a tailored N‐doped carbon matrix, the 3‐CCO@C composite exhibits high cycling stability (capacity of 314 mA h g?1 at 1000 mA g?1 after 1000 cycles) and high rate capability (296 mA h g?1, even at 5000 mA g?1). Significantly, the Na storage mechanism is systematically explored, demonstrating that the irreversible reaction of CuCo2O4, which decomposes to Cu and Co, happens in the first discharge process, and then a reversible reaction between metallic Cu/Co and CuO/Co3O4 occurrs during the following cycles. This result is conducive to a mechanistic study of highly promising bimetallic‐oxide anodes for rechargeable SIBs.  相似文献   

11.
Li metal is the optimal choice as an anode due to its high theoretical capacity, but it suffers from severe dendrite growth, especially at high current rates. Here, an ionic gradient and lithiophilic inter‐phase film is developed, which promises to produce a durable and high‐rate Li‐metal anode. The film, containing an ionic‐conductive Li0.33La0.56TiO3 nanofiber (NF) layer on the top and a thin lithiophilic Al2O3 NF layer on the bottom, is fabricated with a sol–gel electrospinning method followed by sintering. During cycling, the top layer forms a spatially homogenous ionic field distribution over the anode, while the bottom layer reduces the driving force of Li‐dendrite formation by decreasing the nucleation barrier, enabling dendrite‐free plating‐stripping behavior over 1000 h at a high current density of 5 mA cm?2. Remarkably, full cells of Li//LiNi0.8Co0.15Al0.05O2 exhibit a high capacity of 133.3 mA h g?1 at 5 C over 150 cycles, contributing a step forward for high‐rate Li‐metal anodes.  相似文献   

12.
Metallic Li is considered as one of the most promising anode materials for next‐generation batteries due to its high theoretical capacity and low electrochemical potential. However, its commercialization has been impeded by the severe safety issues associated with Li‐dendrite growth. Non‐uniform Li‐ion flux on the Li‐metal surface and the formation of unstable solid electrolyte interphase (SEI) during the Li plating/stripping process lead to the growth of dendritic and mossy Li structures that deteriorate the cycling performance and can cause short‐circuits. Herein, an ultrathin polymer film of “polyurea” as an artificial SEI layer for Li‐metal anodes via molecular‐layer deposition (MLD) is reported. Abundant polar groups in polyurea can redistribute the Li‐ion flux and lead to a uniform plating/stripping process. As a result, the dendritic Li growth during cycling is efficiently suppressed and the life span is significantly prolonged (three times longer than bare Li at a current density of 3 mA cm?2). Moreover, the detailed surface and interfacial chemistry of Li metal are studied comprehensively. This work provides deep insights into the design of artificial SEI coatings for Li metal and progress toward realizing next‐generation Li‐metal batteries.  相似文献   

13.
Molybdenum disulfide (MoS2) is a promising anode for high performance sodium‐ion batteries due to high specific capacity, abundance, and low cost. However, poor cycling stability, low rate capability and unclear electrochemical reaction mechanism are the main challenges for MoS2 anode in Na‐ion batteries. In this study, molybdenum disulfide/carbon (MoS2/C) nanospheres are fabricated and used for Na‐ion battery anodes. MoS2/C nanospheres deliver a reversible capacity of 520 mAh g?1 at 0.1 C and maintain at 400 mAh g?1 for 300 cycles at a high current density of 1 C, demonstrating the best cycling performance of MoS2 for Na‐ion batteries to date. The high capacity is attributed to the short ion and electron diffusion pathway, which enables fast charge transfer and low concentration polarization. The stable cycling performance and high coulombic efficiency (~100%) of MoS2/C nanospheres are ascribed to (1) highly reversible conversion reaction of MoS2 during sodiation/desodiation as evidenced by ex‐situ X‐ray diffraction (XRD) and (2) the formation of a stable solid electrolyte interface (SEI) layer in fluoroethylene carbonate (FEC) based electrolyte as demonstrated by fourier transform infrared spectroscopy (FTIR) measurements.  相似文献   

14.
For its high theoretical capacity and low redox potential, Li metal is considered to be one of the most promising anode materials for next‐generation batteries. However, practical application of a Li‐metal anode is impeded by Li dendrites, which are generated during the cycling of Li plating/stripping, leading to safety issues. Researchers attempt to solve this problem by spatially confining the Li plating. Yet, the effective directing of Li deposition into the confined space is challenging. Here, an interlayer is constructed between a graphitic carbon nitrite layer (g‐C3N4) and carbon cloth (CC), enabling site‐directed dendrite‐free Li plating. The g‐C3N4/CC as an anode scaffold enables extraordinary cycling stability for over 1500 h with a small overpotential of ≈80 mV at 2 mA cm?2. Furthermore, prominent battery performance is also demonstrated in a full cell (Li/g‐C3N4/CC as anode and LiCoO2 as cathode) with high Coulombic efficiency of 99.4% over 300 cycles.  相似文献   

15.
Sodium metal anode, featuring high capacity, low voltage and earth abundance, is desirable for building advanced sodium‐metal batteries. However, Na‐ion deposition typically leads to morphological instability and notorious chemical reactivity between sodium and common electrolytes still limit its practical application. In this study, a porous BN nanofibers modified sodium metal (BN/Na) electrode is introduced for enhancing Na‐ion deposition dynamics and stability. As a result, symmetrical BN/Na cells enable an impressive rate capability and markedly enhanced cycling durability over 600 h at 10 mA cm?2. Density functional theory simulations demonstrate BN could effectively improve Na‐ion adsorption and diffusion kinetics simultaneously. Finite element simulation clearly reveals the intrinsic smoothing effect of BN upon multiple Na‐ion plating/stripping cycles. Coupled with a Na3V2O2(PO4)2F/Ti3C2X cathode, sodium metal full cells offer an ultrastable capacity of 125/63 mA h g?1 (≈420/240 Wh kg?1) at 0.05/5 C rate over 500 cycles. These comprehensive analyses demonstrate the feasibility of BN/Na anode for the establishment of high‐energy‐density sodium‐metal full batteries.  相似文献   

16.
Hybrid metal‐ion capacitors (MICs) (M stands for Li or Na) are designed to deliver high energy density, rapid energy delivery, and long lifespan. The devices are composed of a battery anode and a supercapacitor cathode, and thus become a tradeoff between batteries and supercapacitors. In the past two decades, tremendous efforts have been put into the search for suitable electrode materials to overcome the kinetic imbalance between the battery‐type anode and the capacitor‐type cathode. Recently, some transition‐metal compounds have been found to show pseudocapacitive characteristics in a nonaqueous electrolyte, which makes them interesting high‐rate candidates for hybrid MIC anodes. Here, the material design strategies in Li‐ion and Na‐ion capacitors are summarized, with a focus on pseudocapacitive oxide anodes (Nb2O5, MoO3, etc.), which provide a new opportunity to obtain a higher power density of the hybrid devices. The application of Mxene as an anode material of MICs is also discussed. A perspective to the future research of MICs toward practical applications is proposed to close.  相似文献   

17.
To achieve a high reversibility and long cycle life for Li–O2 battery system, the stable tissue‐directed/reinforced bifunctional separator/protection film (TBF) is in situ fabricated on the surface of metallic lithium anode. It is shown that a Li–O2 cell composed of the TBF‐modified lithium anodes exhibits an excellent anodic reversibility (300 cycles) and effectively improved cathodic long lifetime (106 cycles). The improvement is attributed to the ability of the TBF, which has chemical, electrochemical, and mechanical stability, to effectively prevent direct contact between the surface of the lithium anode and the highly reactive reduced oxygen species (Li2O2 or its intermediate LiO2) in cell. It is believed that the protection strategy describes here can be easily extended to other next‐generation high energy density batteries using metal as anode including Li–S and Na–O2 batteries.  相似文献   

18.
The recharge ability of zinc metal‐based aqueous batteries is greatly limited by the zinc anode. The poor cycling durability of Zn anodes is attributed to the dendrite growth, shape change and passivation, but this issue has been ignored by using an excessive amount of Zn in the past. Herein, a 3D nanoporous (3D NP) Zn–Cu alloy is fabricated by a sample electrochemical‐assisted annealing thermal method combined, which can be used directly as self‐supported electrodes applied for renewable zinc‐ion devices. The 3D NP architectures electrode offers high electron and ion transport paths and increased material loading per unit substrate area, which can uniformly deposit/strip Zn and improve charge storage ability. Benefiting from the intrinsic materials and architectures features, the 3D NP Zn–Cu alloy anode exhibits high areal capacity and excellent cycling stability. Further, the fabricated high‐voltage double electrolyte aqueous Zn–Br2 battery can deliver maximum areal specific capacity of ≈1.56 mAh cm?2, which is close to the level of typical commercial Li‐ion batteries. The excellent performance makes it an ideal candidate for next‐generation aqueous zinc‐ion batteries.  相似文献   

19.
Na metal anode attracts increasing attention as a promising candidate for Na metal batteries (NMBs) due to the high specific capacity and low potential. However, similar to issues faced with the use of Li metal anode, crucial problems for metallic Na anode remain, including serious moss‐like and dendritic Na growth, unstable solid electrolyte interphase formation, and large infinite volume changes. Here, the rational design of carbon paper (CP) with N‐doped carbon nanotubes (NCNTs) as a 3D host to obtain Na@CP‐NCNTs composites electrodes for NMBs is demonstrated. In this design, 3D carbon paper plays a role as a skeleton for Na metal anode while vertical N‐doped carbon nanotubes can effectively decrease the contact angle between CP and liquid metal Na, which is termed as being “Na‐philic.” In addition, the cross‐conductive network characteristic of CP and NCNTs can decrease the effective local current density, resulting in uniform Na nucleation. Therefore, the as‐prepared Na@CP‐NCNT exhibits stable electrochemical plating/stripping performance in symmetrical cells even when using a high capacity of 3 mAh cm?2 at high current density. Furthermore, the 3D skeleton structure is observed to be intact following electrochemical cycling with minimum volume change and is dendrite‐free in nature.  相似文献   

20.
Potassium metal batteries are considered as attractive alternatives beyond lithium-ion batteries. However, uncontrollable dendrite growth on the potassium metal anode has restrained their practical applications. A high-performance potassium anode achieved by confining potassium metal into a titanium-deficient nitrogen-containing MXene/carbon nanotube freestanding scaffold is reported. The high electronic transport and fast potassium diffusion in this scaffold enable reduced local current density and homogeneous ionic flux during plating/stripping processes. Furthermore, as verified by theoretical calculations and experimental investigations, such “potassium-philic” MXene sheets can induce the nucleation of potassium, and guide potassium to uniformly distribute in the scaffold upon cycling. Consequently, the as-developed potassium metal anodes exhibit a dendrite-free morphology with high Coulombic efficiency and long cycle life during plating/stripping processes. Such anodes also deliver significantly improved electrochemical performances in potassium–sulfur batteries compared with bare potassium metal anodes. This work can provide a new avenue for developing potassium metal-based batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号