首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel plasmonic heterodimer nanostructure with a controllable self‐assembled hot spot is fabricated by the conjugation of individual Au@Ag core–shell nanocubes (Au@Ag NCs) and varisized gold nanospheres (GNSs) via the biotin–streptavidin interaction from the ensemble to the single‐assembly level. Due to their featured configurations, three types of heterogeneous nanostructures referred to as Vertice, Vicinity, and Middle are proposed and a single hot spot forms between the nanocube and nanosphere, which exhibits distinct diversity in surface plasmon resonance effect. Herein, the calculated surface‐enhanced Raman scattering enhancement factors of the three types of heterodimers show a narrow distribution and can be tuned in orders of magnitude by controlling the size of GNSs onto individual Au@Ag NCs. Particularly, the Vertice heterodimer with unique configuration can provide extraordinary enhancement of the electric field for the single hot spot region due to the collaborative interaction of lightning rod effect and interparticle plasmon coupling effect. This established relationship between the architecture and the corresponding optical properties of the heterodimers provides the basis for creating controllable platforms which can be exploited in the applications of plasmonic devices, electronics, and biodetection.  相似文献   

2.
Plasmon‐mediated photocatalytic systems generally suffer from poor efficiency due to weak absorption overlap and thus limited energy transfer between the plasmonic metal and the semiconductor. Herein, a near‐ideal plasmon‐mediated photocatalyst system is developed. Au/CdSe nanocrystal clusters (NCs) are successfully fabricated through a facile emulsion‐based self‐assembly approach, containing Au nanoparticles (NPs) of size 2.8, 4.6, 7.2, or 9.0 nm and CdSe quantum dots (QDs) of size ≈3.3 nm. Under visible‐light irradiation, the Au/CdSe NCs with 7.2 nm Au NPs afford very stable operation and a remarkable H2‐evolution rate of (10× higher than bare CdSe NCs). Plasmon resonance energy transfer from the Au NPs to the CdSe QDs, which enhances charge‐carrier generation in the semiconductor and suppresses bulk recombination, is responsible for the outstanding photocatalytic performance. The approach used here to fabricate the Au/CdSe NCs is suitable for the construction of other plasmon‐mediated photocatalysts.  相似文献   

3.
Illumination of noble metal nanoparticles at the plasmon resonance causes substantial heat generation, and the transient and highly localized temperature increases that result from this energy conversion can be exploited for photothermal therapy by plasmonically heating gold nanorods (NRs) bound to cell surfaces. Here, plasmonic heating is used for the first time to locally release silver from gold core/silver shell (Au@Ag) NRs targeted to bacterial cell walls. A novel biomimetic method of preparing Au@Ag core–shell NRs is employed, involving deposition of a thin organic polydopamine (PD) primer onto Au NR surfaces, followed by spontaneous electroless silver metallization, and conjugation of antibacterial antibodies and passivating polymers for targeting to gram‐negative and gram‐positive bacteria. Dramatic cytotoxicity of S. epidermidis and E. coli cells targeted with Au@Ag NRs is observed upon exposure to light as a result of the combined antibacterial effects of plasmonic heating and silver release. The antibacterial effect is much greater than with either plasmonic heating or silver alone, implying a strong therapeutic synergy between cell‐targeted plasmonic heating and the associated silver release upon irradiation. The findings suggest a potential antibacterial use of Au@Ag NRs when coupled with light irradiation, which has not been previously described.  相似文献   

4.
High‐efficient charge and energy transfer between nanocrystals (NCs) in a bottom‐up assembly are hard to achieve, resulting in an obstacle in application. Instead of the ligands exchange strategies, the advantage of a continuous laser is taken with optimal wavelength and power to irradiate the film‐scale NCs superlattices at solid–liquid interfaces. Owing to the Au‐based NCs' surface plasmon resonance (SPR) effect, the gentle laser irradiation leads the Au NCs or Au@CdS core/shell NCs to attach each other with controlled pattern at the interfaces between solid NCs phase and liquid ethanol/ethylene glycol. A continuous wave 532 nm laser (6.68–13.37 W cm?2), to control Au‐based superlattices, is used to form the monolayer with uniformly reduced interparticle distance followed by welded superstructures. Considering the size effect to Au NCs' melting, when decreasing the Au NCs size to ≈5 nm, stronger welding nanostructures are obtained with diverse unprecedented shapes which cannot be achieved by normal colloidal synthesis. With the help of facile scale‐up and formation at solid–liquid interfaces, and a good connection of crystalline between NCs, the obtained plasmonic superstructured films that could be facilely transferred onto different substrates exhibit broad SPR absorption in the visible and near‐infrared regime, enhanced electric conductivities, and wide applications as surface enhanced Raman scattering (SERS)‐active substrates.  相似文献   

5.
Developing processes to controllably dope transition‐metal dichalcogenides (TMDs) is critical for optical and electrical applications. Here, molecular reductants and oxidants are introduced onto monolayer TMDs, specifically MoS2, WS2, MoSe2, and WSe2. Doping is achieved by exposing the TMD surface to solutions of pentamethylrhodocene dimer as the reductant (n‐dopant) and “Magic Blue,” [N(C6H4p‐Br)3]SbCl6, as the oxidant (p‐dopant). Current–voltage characteristics of field‐effect transistors show that, regardless of their initial transport behavior, all four TMDs can be used in either p‐ or n‐channel devices when appropriately doped. The extent of doping can be controlled by varying the concentration of dopant solutions and treatment time, and, in some cases, both nondegenerate and degenerate regimes are accessible. For all four TMD materials, the photoluminescence intensity; for all four materials the PL intensity is enhanced with p‐doping but reduced with n‐doping. Raman and X‐ray photoelectron spectroscopy (XPS) also provide insight into the underlying physical mechanism by which the molecular dopants react with the monolayer. Estimates of changes of carrier density from electrical, PL, and XPS results are compared. Overall a simple and effective route to tailor the electrical and optical properties of TMDs is demonstrated.  相似文献   

6.
All‐inorganic perovskites have high carrier mobility, long carrier diffusion length, excellent visible light absorption, and well overlapping with localized surface plasmon resonance (LSPR) of noble metal nanocrystals (NCs). The high‐performance photodetectors can be constructed by means of the intrinsic outstanding photoelectric properties, especially plasma coupling. Here, for the first time, inorganic perovskite photodetectors are demonstrated with synergetic effect of preferred‐orientation film and plasmonic with both high performance and solution process virtues, evidenced by 238% plasmonic enhancement factor and 106 on/off ratio. The CsPbBr3 and Au NC inks are assembled into high‐quality films by centrifugal‐casting and spin‐coating, respectively, which lead to the low cost and solution‐processed photodetectors. The remarkable near‐field enhancement effect induced by the coupling between Au LSPR and CsPbBr3 photogenerated carriers is revealed by finite‐difference time‐domain simulations. The photodetector exhibits a light on/off ratio of more than 106 under 532 nm laser illumination of 4.65 mW cm?2. The photocurrent increases from 0.67 to 2.77 μA with centrifugal‐casting. Moreover, the photocurrent rises from 245.6 to 831.1 μA with Au NCs plasma enhancement, leading to an enhancement factor of 238%, which is the most optimal report among the LSPR‐enhanced photodetectors, to the best of our knowledge. The results of this study suggest that all‐inorganic perovskites are promising semiconductors for high‐performance solution‐processed photodetectors, which can be further enhanced by Au plasmonic effect, and hence have huge potentials in optical communication, safety monitoring, and biological sensing.  相似文献   

7.
Gold nanoclusters (Au NCs) are one of the most promising fluorescent nanomaterials for bioimaging, targeting, and cancer therapy due to their tunable optical properties, yet their biocompatibility still remains unclear. Herein, the cytotoxicity of bovine serum albumin (BSA)‐stabilized Au NCs is studied by using three tumor cell lines and two normal cell lines. The results indicate that Au NCs induce the decline of cell viabilities of different cell lines to varying degrees in a dose‐ and time‐dependent manner, and umbilical vein endothelial cells which had a higher intake of Au NCs than melanoma cells show more toxicity. Addition of free BSA to BSA‐Au NCs solutions can relieve the cytotoxicity, implying that BSA can prevent cell damage. Moreover, Au NCs increase intracellular reactive oxygen species (ROS) production, further causing cell apoptosis. Furthermore, N‐acetylcysteine, a ROS scavenger, partially reverses Au NCs‐induced cell apoptosis and cytotoxicity, indicating that ROS might be one of the primary reasons for the toxicity of BSA‐Au NCs. Surprisingly, Au NCs with concentrations of 5 and 20 nM significantly inhibit tumor growth in the xenograft mice model of human liver cancer, which might provide a new avenue for the design of anti‐cancer drug delivery vehicles.  相似文献   

8.
The combination of metal and semiconductor components in nanoscale to form a hybrid nanocrystal provides an important approach for achieving advanced functional materials with special optical, magnetic and photocatalytic functionalities. Here, a facile solution method is reported for the synthesis of Au–Ni–ZnO metal–semiconductor hybrid nanocrystals with a flower‐like morphology and multifunctional properties. This synthetic strategy uses noble and magnetic metal Au@Ni nanocrystal seeds formed in situ to induce the heteroepitaxial growth of semiconducting ZnO nanopyramids onto the surface of metal cores. Evidence of epitaxial growth of ZnO{0001} facets on Ni {111} facets is observed on the heterojunction, even though there is a large lattice mismatch between the semiconducting and magnetic components. Adjustment of the amount of Au and Ni precursors can control the size and composition of the metal core, and consequently modify the surface plasmon resonance (SPR) and magnetic properties. Room‐temperature superparamagnetic properties can be achieved by tuning the size of Ni core. The as‐prepared Au–Ni–ZnO nanocrystals are strongly photocatalytic and can be separated and re‐cycled by virtue of their magnetic properties. The simultaneous combination of plasmonic, semiconducting and magnetic components within a single hybrid nanocrystal furnishes it multifunctionalities that may find wide potential applications.  相似文献   

9.
Surface plasmon resonance (SPR)‐mediated photocatalysis without the bandgap limitations of traditional semiconductor has aroused significant attention in solar‐to‐chemical energy conversion. However, the photocatalytic efficiency barely initiated by the SPR effects is still challenged by the low concentration and ineffective extraction of energetic hot electrons, slow charge migration rates, random charge diffusion directions, and the lack of highly active sites for redox reactions. Here, the tunable, progressive harvesting of visible‐to‐near infrared light (vis–NIR, λ > 570 nm) by designing plasmonic Au nanorods and metal (Au, Ag, or Pt) nanoparticle codecorated 1D CdS nanowire (1D CdS NW) ensemble is reported. The intimate integration of these metal nanostructures with 1D CdS NWs promotes the extraction and manipulated directional separation and migration of hot charge carriers in a more effective manner. Such cooperative synergy with tunable control of interfacial interaction, morphology optimization, and cocatalyst strategy results in the distinctly boosted performance for vis–NIR‐driven plasmonic photocatalysis. This work highlights the significance of rationally progressive design of plasmonic metal–semiconductor‐based composite system for boosting the regulated directional flow of hot charge carrier and thus the more efficient use of broad‐spectrum solar energy conversion.  相似文献   

10.
Hydrogen production from water splitting through an efficient photoelectrochemical route requires photoinduced electron transfer from light harvesters to efficient electrocatalysts. Here, the plasmon‐enhanced photoelectrical nanocatalysts (NCs) have been successfully developed by coating a monolayer MoS2 on the Cu1.75S‐Au hetero‐nanoparticle for hydrogen evolution reaction (HER). The plasmonic NCs dramatically improve the HER, leading to 29.5‐fold increase of current under 650 nm excitation (1.0 W cm?2). These NCs generate an exceptionally high current density of 200 mA cm?2 at overpotential of 182.8 mV with a Tafel slope of 39 mV per decade and excellent stability, which is better than or comparable to the Pt‐free catalysts with carbon rod as counter electrode. The enhanced HER performance can be attributed to the significantly improved broad light absorption (400–3000 nm), more efficient charge separation and abundant active edge sites of monolayer MoS2. The studies may provide a facile strategy for the fabrication of efficient plasmon‐enhanced photoelectrical NCs for HER.  相似文献   

11.
Integration of semiconductors with noble metals to form heteronanostructures can give rise to many interesting plasmonic and electronic properties. A number of such heteronanostructures have been demonstrated comprising noble metals and n‐type semiconductors, such as TiO2, ZnO, SnO2, Fe3O4, and CuO. In contrast, reports on heteronanostructures made of noble metals and p‐type semiconductors are scarce. Cu2O is an unintentional p‐type semiconductor with unique properties. Here, the uniform coating of Cu2O on two types of Au nanorods and systematic studies of the plasmonic properties of the resultant core–shell heteronanostructures are reported. One type of Au nanorods is prepared by seed‐mediated growth, and the other is obtained by oxidation of the as‐prepared Au nanorods. The (Au nanorod)@Cu2O nanostructures produced from the as‐prepared nanorods exhibit two transverse plasmon peaks, whereas those derived from the oxidized nanorods display only one transverse plasmon peak. Through electrodynamic simulations the additional transverse plasmon peak is found to originate from a discontinuous gap formed at the side of the as‐prepared nanorods. The existence of the gap is verified and its formation mechanism is unraveled with additional experiments. The results will be useful for designing metal–semiconductor heteronanostructures with desired plasmonic properties and therefore also for exploring plasmon‐enhanced applications in photocatalysis, solar‐energy harvesting, and biotechnologies.  相似文献   

12.
In this work, dual‐modal (fluorescence and magnetic resonance) imaging capabilities of water‐soluble, low‐toxicity, monodisperse Mn‐doped ZnSe nanocrystals (NCs) with a size (6.5 nm) below the optimum kidney cutoff limit (10 nm) are reported. Synthesizing Mn‐doped ZnSe NCs with varying Mn2+ concentrations, a systematic investigation of the optical properties of these NCs by using photoluminescence (PL) and time resolved fluorescence are demonstrated. The elemental properties of these NCs using X‐ray photoelectron spectroscopy and inductive coupled plasma‐mass spectroscopy confirming Mn2+ doping is confined to the core of these NCs are also presented. It is observed that with increasing Mn2+ concentration the PL intensity first increases, reaching a maximum at Mn2+ concentration of 3.2 at% (achieving a PL quantum yield (QY) of 37%), after which it starts to decrease. Here, this high‐efficiency sample is demonstrated for applications in dual‐modal imaging. These NCs are further made water‐soluble by ligand exchange using 3‐mercaptopropionic acid, preserving their PL QY as high as 18%. At the same time, these NCs exhibit high relaxivity (≈2.95 mM?1 s?1) to obtain MR contrast at 25 °C, 3 T. Therefore, the Mn2+ doping in these water‐soluble Cd‐free NCs are sufficient to produce contrast for both fluorescence and magnetic resonance imaging techniques.  相似文献   

13.
Understanding the growth behavior of nanocrystals (NCs), especially when heteroatoms are introduced, is very important for the optimization of doping (or alloying) and optoelectronic performances. Here, it is reported on the observation of alloying‐facilitated self‐assembly of MgZnO NCs and the underlying mechanism of alloying concentration‐dependent surface grafting. Using the developed one‐pot thermolysis of Zn and Mg organic salts with the help of oleylamine (OAm) and oleic acid (OA), the Mg ions can be introduced into the ZnO lattice without phase separation with concentrations as high as 20%. Interestingly, with the increase of Mg alloying concentration, the morphologies of the products transform from monodispersed NCs to nanoflowers, and then nanobouquet superstructures, which have quasi‐monocrystal features and obey the oriented attachment rules. According to the analyses of surface functional groups, a mechanism involving concentration‐dependent surface grafting is proposed for such alloying‐facilitated self‐assembly.  相似文献   

14.
Hexagonal inverted nanopyramids on gallium‐nitride‐based multiple quantum wells are exploited to confine gold nanocrystals (NCs) at the surface of such light‐emitting heterostructures. The number of NCs incorporated in each pit can be controlled by nanoengineering either the NCs' size or the pit size. Capillarity effects can be used to drive the formation of well‐defined assemblies of Au NCs within each pit, as reported by Sérgio Pereira and co‐workers on p. 1038.  相似文献   

15.
The performance of plasmonic Au nanostructure/metal oxide heterointerface shows great promise in enhancing photoactivity, due to its ability to confine light to the small volume inside the semiconductor and modify the interfacial electronic band structure. While the shape control of Au nanoparticles (NPs) is crucial for moderate bandgap semiconductors, because plasmonic resonance by interband excitations overlaps above the absorption edge of semiconductors, its critical role in water splitting is still not fully understood. Here, first, the plasmonic effects of shape‐controlled Au NPs on bismuth vanadate (BiVO4) are studied, and a largely enhanced photoactivity of BiVO4 is reported by introducing the octahedral Au NPs. The octahedral Au NP/BiVO4 achieves 2.4 mA cm?2 at the 1.23 V versus reversible hydrogen electrode, which is the threefold enhancement compared to BiVO4. It is the highest value among the previously reported plasmonic Au NPs/BiVO4. Improved photoactivity is attributed to the localized surface plasmon resonance; direct electron transfer (DET), plasmonic resonant energy transfer (PRET). The PRET can be stressed over DET when considering the moderate bandgap semiconductor. Enhanced water oxidation induced by the shape‐controlled Au NPs is applicable to moderate semiconductors, and shows a systematic study to explore new efficient plasmonic solar water splitting cells.  相似文献   

16.
Kim S  Hong SH  Park JH  Shin DY  Shin DH  Choi SH  Kim KJ 《Nanotechnology》2011,22(27):275205
Time-resolved photoluminescence (PL) has been studied for B- and Sb-doped Si nanocrystals (NCs) fabricated by ion beam sputtering and annealing. For B-doped Si NCs, the PL intensity as well as the PL lifetime (τPL) increases as NC size (d) varies from 1.5 to 2.6 nm, similar to the case for undoped Si NCs, but with further increase of d, they decrease, possibly resulting from the increase of optically less active NCs with the increase of NCs containing more dopants. The PL intensity and τPL monotonically decrease with increasing doping concentration (nD), irrespective of doping element. Si NCs show smaller τPL in B doping than in Sb doping over the full range of nD. The sharp decrease in PL intensity, accompanied by the gradual decrease in τPL for the higher nD of Sb, may be attributed to Auger recombination due to the presence of Sb inside Si NCs. The higher PL quench rate by Sb compared to B could be attributed to better ionization of Sb dopants in Si NCs.  相似文献   

17.
The assembly of plasmonic nanoparticles with precise spatial and orientational order may lead to structures with new electromagnetic properties at optical frequencies. The directed self‐assembly method presented controls the interparticle‐spacing and symmetry of the resulting nanometer‐sized elements in solution. The self‐assembly of three‐dimensional (3D), icosahedral plasmonic nanosclusters (NCs) with resonances at visible wavelengths is demonstrated experimentally. The ideal NCs consist of twelve gold (Au) nanospheres (NSs) attached to thiol groups at predefined locations on the surface of a genetically engineered cowpea mosaic virus with icosahedral symmetry. In situ dynamic light scattering (DLS) measurements confirm the NSs assembly on the virus. Transmission electron micrographs (TEM) demonstrate the ability of the self‐assembly method to control the nanoscopic symmetry of the bound NSs, which reflects the icosahedral symmetry of the virus. Both, TEM and DLS show that the NCs comprise of a distribution of capsids mostly covered (i.e., 6–12 NS/capsid) with NSs. 3D finite‐element simulations of aqueous suspensions of NCs reproduce the experimental bulk absorbance measurements and major features of the spectra. Simulations results show that the fully assembled NCs give rise to a 10‐fold surface‐averaged enhancement of the local electromagnetic field.  相似文献   

18.
The surface structure‐controlled synthesis of noble metal nanocrystals (NCs) bounded by high‐index facets has become a hot research topic due to their potential to significantly improve catalytic performance. This study reports the preparation of monodisperse Au–Pd alloy NCs with systematic shape evolution from rhombic dodecahedral (RD) to trisoctahedral (TOH), and hexoctahedral (HOH) structures by varying the concentration of surfactant in the surfactant‐mediated synthesis. The as‐prepared three kinds of alloy NCs possess almost the same size and composition as each other. It is suggested that the surfactant containing long‐chain octadecyltrimethyl ammonium (OTA+) ions plays a key role in the formation of high index facets, and the crystal growth kinetics may also have an effect on the formation of different nanocrystal morphologies. In addition, the catalytic activities of these NCs are evaluated by structure‐sensitive reactions, including ethanol electro‐oxidation and the catalytic reduction of 4‐nitrophenol (4‐NPh). These three types of Au–Pd alloy NCs exhibit different catalytic selectivities towards these two reactions. The catalytic activities toward electro‐oxidation of ethanol are in the order of HOH > RD > TOH, which follows the order of their corresponding surface energies. However, the activities toward catalytic reduction of 4‐NPh are in the order of RD > TOH > HOH, which should be related to the local structure of the surfaces.  相似文献   

19.
Current photocatalytic semiconductors often have low catalytic performance due to limited light utilization and fast charge carrier recombination. Formation of Schottky junction between semiconductors and plasmonic metals can broaden the light absorption and facilitate the photon‐generated carriers separation. To further amplify the catalytic performance, herein, an asymmetric gold‐zinc oxide (Asy‐Au?ZnO) nanorod array is rationally designed, which realizes the synergy of piezocatalysis and photocatalysis, as well as spatially oriented electron?hole pairs separation, generating a significantly enhanced catalytic performance. In addition to conventional properties from noble metal/semiconductor Schottky junction, the rationally designed heterostructure has several additional advantages: 1) The piezoelectric ZnO under light and mechanical stress can directly generate charge carriers; 2) the Schottky barrier can be reduced by ZnO piezopotential to enhance the injection efficiency of hot electrons from Au nanoparticles to ZnO; 3) the unique asymmetric nanorod array structure can achieve a spatially directed separation and migration of the photon‐generated carriers. When ultrasound and all‐spectrum light irradiation are exerted simultaneously, the Asy‐Au?ZnO reaches the highest catalytic efficiency of 95% in 75 min for dye degradation. It paves a new pathway for designing unique asymmetric nanostructures with the synergy of photocatalysis and piezocatalysis.  相似文献   

20.
Promoted by the localized surface plasmon resonance nanotechnology, a simple and sensitive plasmonic aptamer nanosensor (nanoaptasensor) on an individual Au@Ag core‐shell nanocube (Au@Ag NC) has been proposed for real‐time monitoring of the formation process of G‐quadruplex structures and label‐free analysis of potassium ions (K+). In particular, the analysis of the thermodynamic parameters indicates that there are two types of binding states accompanied with a remarkable change of free energy (ΔG) in the sequential folding process of telomere DNA sequence. This nanoaptasensor has raised promising applications in monitoring the dynamic process of the structural switch of the G‐quadruplex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号