首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholesteric liquid crystals (CLCs) exhibit selective reflection that can be tuned owing to the dynamic control of inherent self‐organized helical superstructures. Although phototunable reflection is reported, these systems hitherto suffer from a limitation in that the tuning range is restricted to one narrow period and the optically addressed images have to sacrifice one color in the visible spectrum to serve as the background, resulting from the insufficient variation in helical twisting power of existing photoresponsive chiral switches that are all bistable. Here, delicate patterns of three primary red, green, and blue (RGB) colors with a black background are presented, which is realized based on piecewise reflection tuning of the CLC induced by a newly designed photoresponsive tristable chiral switch. Three stable configurations of the chiral switch endow the CLC with two continuous and adjacent tuning periods of the reflection, covering not only entire visible spectrum, but also one more wide period within near‐infrared region. Therefore, the concept of piecewise tuning in CLC system demonstrates a new strategy for phototunable RGB and black reflective display.  相似文献   

2.
3.
4.
The ability to tune molecular self‐organization with an external stimulus is a main driving force in the bottom‐up nanofabrication of molecular devices. Light‐driven chiral molecular switches or motors in liquid crystals that are capable of self‐organizing into optically tunable helical superstructures undoubtedly represent a striking example, owing to their unique property of selective light reflection and which may lead to applications in the future. In this review, we focus on different classes of light‐driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric liquid crystal systems and their consequent applications. Moreover, the change of helical twisting powers of chiral dopants and their capability of helix inversion in the induced cholesteric phases are highlighted and discussed in the light of their molecular geometric changes.  相似文献   

5.
6.
7.
Supramolecular and macromolecular functional helical superstructures are ubiquitous in nature and display an impressive catalog of intriguing and elegant properties and performances. In materials science, self‐organized soft helical superstructures, i.e., cholesteric liquid crystals (CLCs), serve as model systems toward the understanding of morphology‐ and orientation‐dependent properties of supramolecular dynamic helical architectures and their potential for technological applications. Moreover, most of the fascinating device applications of CLCs are primarily determined by different orientations of the helical axis. Here, the control of the helical axis orientation of CLCs and its dynamic switching in two and three dimensions using different external stimuli are summarized. Electric‐field‐, magnetic‐field‐, and light‐irradiation‐driven orientation control and reorientation of the helical axis of CLCs are described and highlighted. Different techniques and strategies developed to achieve a uniform lying helix structure are explored. Helical axis control in recently developed heliconical cholesteric systems is examined. The control of the helical axis orientation in spherical geometries such as microdroplets and microshells fabricated from these enticing photonic fluids is also explored. Future challenges and opportunities in this exciting area involving anisotropic chiral liquids are then discussed.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号