首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existence of defects in 2D semiconductors has been predicted to generate unique physical properties and markedly influence their electronic and optoelectronic properties. In this work, it is found that the monolayer MoS2 prepared by chemical vapor deposition is nearly defect‐free after annealing under ultrahigh vacuum conditions at ≈400 K, as evidenced by scanning tunneling microscopy observations. However, after thermal annealing process at ≈900 K, the existence of dominant single sulfur vacancies and relatively rare vacancy chains (2S, 3S, and 4S) is convinced in monolayer MoS2 as‐grown on Au foils. Of particular significance is the revelation that the versatile vacancies can modulate the band structure of the monolayer MoS2, leading to a decrease of the bandgap and an obvious n‐doping effect. These results are confirmed by scanning tunneling spectroscopy data as well as first‐principles theoretical simulations of the related morphologies and the electronic properties of the various defect types. Briefly, this work should pave a novel route for defect engineering and hence the electronic property modulation of three‐atom‐thin 2D layered semiconductors.  相似文献   

2.
Irradiation of 2D sheets of transition metal dichalcogenides with ion beams has emerged as an effective approach to engineer chemically active defects in 2D materials. In this context, argon‐ion bombardment has been utilized to introduce sulfur vacancies in monolayer molybdenum disulfide (MoS2). However, a detailed understanding of the effects of generated defects on the functional properties of 2D MoS2 is still lacking. In this work, the correlation between critical electronic device parameters and the density of sulfur vacancies is systematically investigated through the fabrication and characterization of back‐gated monolayer MoS2 field‐effect transistors (FETs) exposed to a variable fluence of low‐energy argon ions. The electrical properties of pristine and ion‐irradiated FETs can be largely improved/recovered by exposing the devices to vapors of short linear thiolated molecules. Such a solvent‐free chemical treatment—carried out strictly under inert atmosphere—rules out secondary healing effects induced by oxygen or oxygen‐containing molecules. The results provide a guideline to design monolayer MoS2 optoelectronic devices with a controlled density of sulfur vacancies, which can be further exploited to introduce ad hoc molecular functionalities by means of thiol chemistry approaches.  相似文献   

3.
Molybdenum disulfide (MoS2) is a promising electrode material for electrochemical energy storage owing to its high theoretical specific capacity and fascinating 2D layered structure. However, its sluggish kinetics for ionic diffusion and charge transfer limits its practical applications. Here, a promising strategy is reported for enhancing the Na+‐ion charge storage kinetics of MoS2 for supercapacitors. In this strategy, electrical conductivity is enhanced and the diffusion barrier of Na+ ion is lowered by a facile phosphorus‐doping treatment. Density functional theory results reveal that the lowest energy barrier of dilute Na‐vacancy diffusion on P‐doped MoS2 (0.11 eV) is considerably lower than that on pure MoS2 (0.19 eV), thereby signifying a prominent rate performance at high Na intercalation stages upon P‐doping. Moreover, the Na‐vacancy diffusion coefficient of the P‐doped MoS2 at room temperatures can be enhanced substantially by approximately two orders of magnitude (10?6–10?4 cm2 s?1) compared with pure MoS2. Finally, the quasi‐solid‐state asymmetrical supercapacitor assembled with P‐doped MoS2 and MnO2, as the positive and negative electrode materials, respectively, exhibits an ultrahigh energy density of 67.4 W h kg?1 at 850 W kg?1 and excellent cycling stability with 93.4% capacitance retention after 5000 cycles at 8 A g?1.  相似文献   

4.
1T‐phase molybdenum disulfide (1T‐MoS2) exhibits superior hydrogen evolution reaction (HER) over 2H‐phase MoS2 (2H‐MoS2). However, its thermodynamic instability is the main drawback impeding its practical application. In this work, a stable 1T‐MoS2 monolayer formed at edge‐aligned 2H‐MoS2 and a reduced graphene oxide heterointerface (EA‐2H/1T/RGO) using a precursor‐in‐solvent synthesis strategy are reported. Theoretical prediction indicates that the edge‐aligned layer stacking can induce heterointerfacial charge transfer, which results in a phase transition of the interfacial monolayer from 2H to 1T that realizes thermodynamic stability based on the adhesion energy between MoS2 and graphene. As an electrocatalyst for HER, EA‐2H/1T/RGO displays an onset potential of ?103 mV versus RHE, a Tafel slope of 46 mV dec?1 and 10 h stability in acidic electrolyte. The unexpected activity of EA‐2H/1T/RGO beyond 1T‐MoS2 is due to an inherent defect caused by the gliding of S atoms during the phase transition from 2H to 1T, leading the Gibbs free energy of hydrogen adsorption (ΔGH*) to decrease from 0.13 to 0.07 eV, which is closest to the ideal value (0.06 eV) of 2H‐MoS2. The presented work provides fundamental insights into the impressive electrochemical properties of HER and opens new avenues for phase transitions at 2D/2D hybrid interfaces.  相似文献   

5.
Herein, the structural effect of MoS2 as a cocatalyst of photocatalytic H2 generation activity of g‐C3N4 under visible light irradiation is studied. By using single‐particle photoluminescence (PL) and femtosecond time‐resolved transient absorption spectroscopies, charge transfer kinetics between g‐C3N4 and two kinds of nanostructured MoS2 (nanodot and monolayer) are systematically investigated. Single‐particle PL results show the emission of g‐C3N4 is quenched by MoS2 nanodots more effectively than MoS2 monolayers. Electron injection rate and efficiency of g‐C3N4/MoS2‐nanodot hybrid are calculated to be 5.96 × 109 s?1 and 73.3%, respectively, from transient absorption spectral measurement, which are 4.8 times faster and 2.0 times higher than those of g‐C3N4/MoS2‐monolayer hybrid. Stronger intimate junction between MoS2 nanodots and g‐C3N4 is suggested to be responsible for faster and more efficient electron injection. In addition, more unsaturated terminal sulfur atoms can serve as the active site in MoS2 nanodot compared with MoS2 monolayer. Therefore, g‐C3N4/MoS2 nanodot exhibits a 7.9 times higher photocatalytic activity for H2 evolution (660 µmol g?1 h?1) than g‐C3N4/MoS2 monolayer (83.8 µmol g?1 h?1). This work provides deep insight into charge transfer between g‐C3N4 and nanostructured MoS2 cocatalysts, which can open a new avenue for more rationally designing MoS2‐based catalysts for H2 evolution.  相似文献   

6.
Controllable growth of highly crystalline transition metal dichalcogenide (TMD) patterns with regular morphology and unique edge structure is highly desired and important for fundamental research and potential applications. Here, single‐crystalline MoS2 flakes are reported with regular trigonal symmetric patterns that can be homoepitaxially grown on MoS2 monolayer via chemical vapor deposition. The highly organized MoS2 patterns are rhombohedral (3R)‐stacked with the underlying MoS2 monolayer, and their boundaries are predominantly terminated by zigzag Mo edge structure. The epitaxial MoS2 crystals can be tailored from compact triangles to fractal flakes, and the pattern formation can be explained by the anisotropic growth rates of the S and Mo edges under low sulfur chemical potential. The 3R‐stacked MoS2 pattern demonstrates strong second and third‐harmonic‐generation signals, which exceed those reported for monolayer MoS2 by a factor of 6 and 4, correspondingly. This homoepitaxial growth approach for making highly organized TMD patterns is also demonstrated for WS2.  相似文献   

7.
Crystalline defects in MoS2 may induce midgap states, resulting in low carrier mobility. These midgap states are usually difficult to probe by conventional transport measurement. The quantum capacitance of single‐layer graphene is sensitive to defect‐induced states near the Dirac point, at which the density of states is extremely low. It is reported that the hexagonal‐boron nitride/graphene/MoS2 sandwich structure facilitates the exploration of the properties of those midgap states in MoS2. Comparative results of the quantum capacitance of pristine graphene indicate the presence of several midgap states with distinct features. Some of these states donate electrons while some states lead to localization of electrons. It is believed that these midgap states originate from intrinsic point defects such as sulfur vacancies, which have a significant impact on the property of the MoS2/graphene interface. They are responsible for the contact problems of metal/MoS­2 interfaces.  相似文献   

8.
Hydrogen production from water splitting through an efficient photoelectrochemical route requires photoinduced electron transfer from light harvesters to efficient electrocatalysts. Here, the plasmon‐enhanced photoelectrical nanocatalysts (NCs) have been successfully developed by coating a monolayer MoS2 on the Cu1.75S‐Au hetero‐nanoparticle for hydrogen evolution reaction (HER). The plasmonic NCs dramatically improve the HER, leading to 29.5‐fold increase of current under 650 nm excitation (1.0 W cm?2). These NCs generate an exceptionally high current density of 200 mA cm?2 at overpotential of 182.8 mV with a Tafel slope of 39 mV per decade and excellent stability, which is better than or comparable to the Pt‐free catalysts with carbon rod as counter electrode. The enhanced HER performance can be attributed to the significantly improved broad light absorption (400–3000 nm), more efficient charge separation and abundant active edge sites of monolayer MoS2. The studies may provide a facile strategy for the fabrication of efficient plasmon‐enhanced photoelectrical NCs for HER.  相似文献   

9.
2D materials hold great potential for designing novel electronic and optoelectronic devices. However, 2D material can only absorb limited incident light. As a representative 2D semiconductor, monolayer MoS2 can only absorb up to 10% of the incident light in the visible, which is not sufficient to achieve a high optical‐to‐electrical conversion efficiency. To overcome this shortcoming, a “gap‐mode” plasmon‐enhanced monolayer MoS2 fluorescent emitter and photodetector is designed by squeezing the light‐field into Ag shell‐isolated nanoparticles–Au film gap, where the confined electromagnetic field can interact with monolayer MoS2. With this gap‐mode plasmon‐enhanced configuration, a 110‐fold enhancement of photoluminescence intensity is achieved, exceeding values reached by other plasmon‐enhanced MoS2 fluorescent emitters. In addition, a gap‐mode plasmon‐enhanced monolayer MoS2 photodetector with an 880% enhancement in photocurrent and a responsivity of 287.5 A W?1 is demonstrated, exceeding previously reported plasmon‐enhanced monolayer MoS2 photodetectors.  相似文献   

10.
Lateral heterostructures consisting of 2D transition metal dichalcogenides (TMDCs) directly interfaced with molecular networks or nanowires can be used to construct new hybrid materials with interesting electronic and spintronic properties. However, chemical methods for selective and controllable bond formation between 2D materials and organic molecular networks need to be developed. As a demonstration of a self‐assembled organic nanowire‐TMDC system, a method to link and interconnect epitaxial single‐layer MoS2 flakes with organic molecules is demonstrated. Whereas pristine epitaxial single‐layer MoS2 has no affinity for molecular attachment, it is found that single‐layer MoS2 will selectively bind the organic molecule 2,8‐dibromodibenzothiophene (DBDBT) in a surface‐assisted Ullmann coupling reaction when the MoS2 has been activated by pre‐exposing it to hydrogen. Atom‐resolved scanning tunneling microscopy (STM) imaging is used to analyze the bonding of the nanowires, and thereby it is revealed that selective bonding takes place on a specific S atom at the corner site between the two types of zig‐zag edges available in a hexagonal single layer MoS2 sheet. The method reported here successfully combining synthesis of epitaxial TMDCs and Ullmann coupling reactions on surfaces may open up new synthesis routes for 2D organic‐TMDC hybrid materials.  相似文献   

11.
MoS2 quantum dots (QDs)‐based white‐light‐emitting diodes (QD‐WLEDs) are designed, fabricated, and demonstrated. The highly luminescent, histidine‐doped MoS2 QDs synthesized by microwave induced fragmentation of 2D MoS2 nanoflakes possess a wide distribution of available electronic states as inferred from the pronounced excitation‐wavelength‐dependent emission properties. Notably, the histidine‐doped MoS2 QDs show a very strong emission intensity, which exceeds seven times of magnitude larger than that of pristine MoS2 QDs. The strongly enhanced emission is mainly attributed to nitrogen acceptor bound excitons and passivation of defects by histidine‐doping, which can enhance the radiative recombination drastically. The enabled electroluminescence (EL) spectra of the QD‐WLEDs with the main peak around 500 nm are found to be consistent with the photoluminescence spectra of the histidine‐doped MoS2 QDs. The enhanced intensity of EL spectra with the current increase shows the stability of histidine‐doped MoS2 based QD‐WLEDs. The typical EL spectrum of the novel QD‐WLEDs has a Commission Internationale de l'Eclairage chromaticity coordinate of (0.30, 0.36) exhibiting an intrinsic broadband white‐light emission. The unprecedented and low‐toxicity QD‐WLEDs based on a single light‐emitting material can serve as an excellent alternative for using transition metal dichalcogenides QDs as next generation optoelectronic devices.  相似文献   

12.
We report a robust method for engineering the optoelectronic properties of many‐layer MoS2 using low‐energy oxygen plasma treatment. Gas phase treatment of MoS2 with oxygen radicals generated in an upstream N2–O2 plasma is shown to enhance the photoluminescence (PL) of many‐layer, mechanically exfoliated MoS2 flakes by up to 20 times, without reducing the layer thickness of the material. A blueshift in the PL spectra and narrowing of linewidth are consistent with a transition of MoS2 from indirect to direct bandgap material. Atomic force microscopy and Raman spectra reveal that the flake thickness actually increases as a result of the plasma treatment, indicating an increase in the interlayer separation in MoS2. Ab initio calculations reveal that the increased interlayer separation is sufficient to decouple the electronic states in individual layers, leading to a transition from an indirect to direct gap semiconductor. With optimized plasma treatment parameters, we observed enhanced PL signals for 32 out of 35 many‐layer MoS2 flakes (2–15 layers) tested, indicating that this method is robust and scalable. Monolayer MoS2, while direct bandgap, has a small optical density, which limits its potential use in practical devices. The results presented here provide a material with the direct bandgap of monolayer MoS2, without reducing sample thickness, and hence optical density.  相似文献   

13.
High‐quality and large‐area molybdenum disulfide (MoS2) thin film is highly desirable for applications in large‐area electronics. However, there remains a challenge in attaining MoS2 film of reasonable crystallinity due to the absence of appropriate choice and control of precursors, as well as choice of suitable growth substrates. Herein, a novel and facile route is reported for synthesizing few‐layered MoS2 film with new precursors via chemical vapor deposition. Prior to growth, an aqueous solution of sodium molybdate as the molybdenum precursor is spun onto the growth substrate and dimethyl disulfide as the liquid sulfur precursor is supplied with a bubbling system during growth. To supplement the limiting effect of Mo (sodium molybdate), a supplementary Mo is supplied by dissolving molybdenum hexacarbonyl (Mo(CO)6) in the liquid sulfur precursor delivered by the bubbler. By precisely controlling the amounts of precursors and hydrogen flow, full coverage of MoS2 film is readily achievable in 20 min. Large‐area MoS2 field effect transistors (FETs) fabricated with a conventional photolithography have a carrier mobility as high as 18.9 cm2 V?1 s?1, which is the highest reported for bottom‐gated MoS2‐FETs fabricated via photolithography with an on/off ratio of ≈105 at room temperature.  相似文献   

14.
Transition metal dichalcogenides with intrinsic spin–valley degrees of freedom hold great potentials for applications in spintronic and valleytronic devices. MoS2 monolayer possesses two inequivalent valleys in the Brillouin zone, with each valley coupling selectively with circularly polarized photons. The degree of valley polarization (DVP) is a parameter to characterize the purity of valley‐polarized photoluminescence (PL) of MoS2 monolayer. Usually, the detected values of DVP in MoS2 monolayer show achiral property under optical excitation of opposite helicities due to reciprocal phonon‐assisted intervalley scattering process. Here, it is reported that valley‐polarized PL of MoS2 can be tailored through near‐field interaction with plasmonic chiral metasurface. The resonant field of the chiral metasurface couples with valley‐polarized excitons, and tailors the measured PL spectra in the far‐field, resulting in observation of chiral DVP of MoS2‐metasurface under opposite helicities excitations. Valley‐contrast PL in the chiral heterostructure is also observed when illuminated by linearly polarized light. The manipulation of valley‐polarized PL in 2D materials using chiral metasurface represents a viable route toward valley‐polaritonic devices.  相似文献   

15.
A new approach of vacancy‐driven gelation to obtain chemically crosslinked hydrogels from defect‐rich 2D molybdenum disulfide (MoS2) nanoassemblies and polymeric binder is reported. This approach utilizes the planar and edge atomic defects available on the surface of the 2D MoS2 nanoassemblies to form mechanically resilient and elastomeric nanocomposite hydrogels. The atomic defects present on the lattice plane of 2D MoS2 nanoassemblies are due to atomic vacancies and can act as an active center for vacancy‐driven gelation with a thiol‐activated terminal such as four‐arm poly(ethylene glycol)–thiol (PEG‐SH) via chemisorption. By modulating the number of vacancies on the 2D MoS2 nanoassemblies, the physical and chemical properties of the hydrogel network can be controlled. This vacancy‐driven gelation process does not require external stimuli such as UV exposure, chemical initiator, or thermal agitation for crosslinking and thus provides a nontoxic and facile approach to encapsulate cells and proteins. 2D MoS2 nanoassemblies are cytocompatible, and encapsulated cells in the nanocomposite hydrogels show high viability. Overall, the nanoengineered hydrogel obtained from vacancy‐driven gelation is mechanically resilient and can be used for a range of biomedical applications including tissue engineering, regenerative medicine, and cell and therapeutic delivery.  相似文献   

16.
Although 2D molybdenum disulfide (MoS2) has gained much attention due to its unique electrical and optical properties, the limited electrical contact to 2D semiconductors still impedes the realization of high‐performance 2D MoS2‐based devices. In this regard, many studies have been conducted to improve the carrier‐injection properties by inserting functional paths, such as graphene or hexagonal boron nitride, between the electrodes and 2D semiconductors. The reported strategies, however, require relatively time‐consuming and low‐yield transfer processes on sub‐micrometer MoS2 flakes. Here, a simple contact‐engineering method is suggested, introducing chemically adsorbed thiol‐molecules as thin tunneling barriers between the metal electrodes and MoS2 channels. The selectively deposited thiol‐molecules via the vapor‐deposition process provide additional tunneling paths at the contact regions, improving the carrier‐injection properties with lower activation energies in MoS2 field‐effect transistors. Additionally, by inserting thiol‐molecules at the only one contact region, asymmetric carrier‐injection is feasible depending on the temperature and gate bias.  相似文献   

17.
Many van der Waals layered 2D materials, such as h‐BN, transition metal dichalcogenides (TMDs), and group‐III monochalcogenides, have been predicted to possess piezoelectric and mechanically flexible natures, which greatly motivates potential applications in piezotronic devices and nanogenerators. However, only intrinsic in‐plane piezoelectricity exists in these 2D materials and the piezoelectric effect is confined in odd‐layers of TMDs. The present work is intent on combining the free‐standing design and piezoresponse force microscopy techniques to obtain and directly quantify the effective out‐of‐plane electromechanical coupling induced by strain gradient on atomically thin MoS2 and InSe flakes. Conspicuous piezoresponse and the measured piezoelectric coefficient with respect to the number of layers or thickness are systematically illustrated for both MoS2 and InSe flakes. Note that the promising effective piezoelectric coefficient (deff33) of about 21.9 pm V?1 is observed on few‐layered InSe. The out‐of‐plane piezoresponse arises from the net dipole moment along the normal direction of the curvature membrane induced by strain gradient. This work not only provides a feasible and flexible method to acquire and quantify the out‐of‐plane electromechanical coupling on van der Waals layered materials, but also paves the way to understand and tune the flexoelectric effect of 2D systems.  相似文献   

18.
A facile approach for the synthesis of Au‐ and Pt‐decorated CuInS2 nanocrystals (CIS NCs) as sensitizer materials on the top of MoS2 bilayers is demonstrated. A single surfactant (oleylamine) is used to prepare such heterostructured noble metal decorated CIS NCs from the pristine CIS. Such a feasible way to synthesize heterostructured noble metal decorated CIS NCs from the single surfactant can stimulate the development of the functionalized heterostructured NCs in large scale for practical applications such as solar cells and photodetectors. Photodetectors based on MoS2 bilayers with the synthesized nanocrystals display enhanced photocurrent, almost 20–40 times higher responsivity and the On/Off ratio is enlarged one order of magnitude compared with the pristine MoS2 bilayers‐based photodetectors. Remarkably, by using Pt‐ or Au‐decorated CIS NCs, the photocurrent enhancement of MoS2 photodetectors can be tuned between blue (405 nm) to green (532 nm). The strategy described here acts as a perspective to significantly improve the performance of MoS2‐based photodetectors with the controllable absorption wavelengths in the visible light range, showing the feasibility of the possible color detection.  相似文献   

19.
Other than the well‐known sulfurization of molybdate compound to synthesize molybdenum disulfide (MoS2) layers, the dynamic process in the whole crystalline growth from nuclei to triangular domains has been rarely experimentally explored. Here, a competing sulfur‐capture principle jointly with strict epitaxial mechanism is first proposed for the initial topography evolution and the final intrinsic highly oriented growth of triangular MoS2 domains with Mo or S terminations on the graphene (Gr) template. Additionally, potential distributions on MoS2 domains and bare Gr are presented to be different due to the charge transfer within heterostructures. The findings offer the mechanism of templated growth of 2D transition metal dichalcogenides, and provide general principles in syntheses of vertical 2D heterostructures that can be applied to electronics.  相似文献   

20.
A generalized scheme for the fabrication of high performance photodetectors consisting of a p‐type channel material and n‐type nanoparticles is proposed. The high performance of the proposed hybrid photodetector is achieved through enhanced photoabsorption and the photocurrent gain arising from its effective charge transfer mechanism. In this paper, the realization of this design is presented in a hybrid photodetector consisting of 2D p‐type black phosphorus (BP) and n‐type molybdenum disulfide nanoparticles (MoS2 NPs), and it is demonstrated that it exhibits enhanced photoresponsivity and detectivity compared to pristine BP photodetectors. It is found that the performance of hybrid photodetector depends on the density of NPs on BP layer and that the response time can be reduced with increasing density of MoS2 NPs. The rising and falling times of this photodetector are smaller than those of BP photodetectors without NPs. This proposed scheme is expected to work equally well for a photodetector with an n‐type channel material and p‐type nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号