首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel negative differential resistance (NDR) phenomenon is reported herein based on planar plasmonic tunnel junction, resulting from plasmon‐assisted long‐range electron tunneling (P‐tunneling) and electronic caching effect of Au@SiO2 nanoparticles. The tunnel junction is made of shell‐insulated Au@SiO2 nanoparticle nanomembrane, in which SiO2 shells act as a tunable tunneling barrier, while the Au core not only support the plasmonic effect to enable P‐tunneling, but also act as electronic caches to render NDR responses. The NDR peak voltage and current can be programmably controlled by varying the thickness of SiO2 shell and the size of Au core to tune barrier level for electron transport. In addition, light induced plasmonic effect can be further managed to regulate the NDR behavior by fine‐tuning P‐tunneling. The phenomenon is exploited for robust use as memristors. The work provides a new mechanism for the generation of NDR effect and may open a way for the development of robust and new conceptual nanoelectronic devices.  相似文献   

2.
Core-shell composite nanoparticles consisting of a gold core and polypyrrole shell were prepared and stabilized with the poly(amidoamine) dendrimer. An in situ redox polymerization technique was used in which pyrrole reduced Au3+ to Au and then oxidized to polypyrrole. The presence of gold nanoparticles as a core was characterized by its surface plasmon absorption peak at 534 nm. Fourier transform infrared spectroscopy confirmed the presence of polypyrrole on the nanoparticle surfaces. The average diameter of the core-shell nanoparticle is 8.7 +/- 1.8 nm with a shell thickness of approximately 1.5-2.0 nm as estimated from the transmission electron microscopy image. Dissolution of the Au core using KCN enabled the formation of hollow polymer nanospheres.  相似文献   

3.
We report a novel one-step method for the preparation of hierarchically patterned Au nanoparticles in a conducting polymer matrix by controlling the interface properties between Au nanoparticles and the conducting polymer matrix. The terminal group of capping molecules for the Au nanoparticles was modified to change the interface properties, not to change the size of the Au nanoparticles which affects their intrinsic properties. By modulating the interface properties, it is possible to construct Au nanoparticle-conducting polymer composites with two different structures: one presents a triple layer in which the conducting polymer layer is sandwiched between Au nanoparticle layers at the top and bottom; the other exhibits a form like a raisin cake in which Au nanoparticles are homogeneously organized in the conducting polymer matrix. High-resolution transmission electron microscopy was used to study the morphology and patterning of Au?nanoparticles in the conducting polymer matrix.  相似文献   

4.
Bottom‐up fabrication of self‐assembled structures made of nanoparticles may lead to new materials, arrays and devices with great promise for myriad applications. Here a new class of metal–peptide scaffolds is reported: coordination polymer Ag(I)‐DLL belt‐like crystals, which enable the dual‐template synthesis of more sophisticated nanoparticle superstructures. In these biorelated scaffolds, the self‐assembly and recognition capacities of peptides and the selective reduction of Ag(I) ions to Ag are simultaneously exploited to control the growth and assembly of inorganic nanoparticles: first on their surfaces, and then inside the structures themselves. The templated internal Ag nanoparticles are well confined and closely packed, conditions that favour electrical conductivity in the superstructures. It is anticipated that these Ag(I)‐DLL belts could be applied to create long (>100 μm) conductive Ag@Ag nanoparticle superstructures and polymetallic, multifunctional Fe3O4@Ag nanoparticle composites that marry the magnetic and conductive properties of the two nanoparticle types.  相似文献   

5.
Water-processable organic semiconductor nanoparticles (NPs) are considered promising materials for the next-generation of optoelectronic applications due to their controlled size, internal structure, and environmentally friendly processing. Reasonably, the controllable assembly of donor:acceptor (D:A) NPs on large areas, quality, and packing density of deposited films, as well as layer morphology, will influence the effectiveness of charge transfer at an interface and the final performance of designed optoelectronic devices.This work represents an easy and effective approach for designing self-assembled monolayers of D:A NPs. In this self-assembly procedure, the NP arrays are prepared on a large scale (2 × 2 cm2) at the air/water interface with controlled packing density and morphology. Due to the unique structure of individual D:A Janus particles and their assembled arrays, the Janus nanoparticle (JNP)-based device exhibits an 80% improvement of electron mobility and more balanced charge extraction compared to the conventional core–shell NP-based device. An outstanding performance of polymer solar cells with over 5% efficiency is achieved after post-annealing treatment of assembled arrays, representing one of the best results for NP-based organic photovoltaics. Ultimately, this work provides a new protocol for processing water-processable organic semiconductor colloids and future optoelectronic fabrication.  相似文献   

6.
Nanosized gold (Au) and polyindole (PIn) composite was prepared via in-situ polymerization of indole, using metal salt chloro-auric acid as an oxidant, in a microemulsion system. The oxidization of indole and the reduction of Au3+ ions occurred simultaneously in a single step, which resulted in a core shell structure having a coating of polyindole over monodispersed, size-controlled, highly populated, and stable gold nanoparticles. Indole polymerization governed by chloro-auric acid, was monitored using UV–vis absorption spectroscopy. Nanoscale electrical characterization of polyindole nanocomposite was performed using current-sensing atomic force microscopy. The investigated properties of the composite proved its enormous potential in electronic applications and fabrication of nanoscale organic devices.  相似文献   

7.
A simple chemical protocol to prepare core–shell gold@spin‐crossover (Au@SCO) nanoparticles (NPs) based on the 1D spin‐crossover [Fe(Htrz)2(trz)](BF4) coordination polymer is reported. The synthesis relies on a two‐step approach consisting of a partial surface ligand substitution of the citrate‐stabilized Au NPs followed by the controlled growth of a very thin layer of the SCO polymer. As a result, colloidally stable core@shell spherical NPs with a Au core of ca. 12 nm and a thin SCO shell 4 nm thick, are obtained, exhibiting a narrow distribution in sizes. Differential scanning calorimetry proves that a cooperative spin transition in the range 340–360 K is maintained in these Au@SCO NPs, in full agreement with the values reported for pristine 4 nm SCO NPs. Temperature‐dependent charge‐transport measurements of an electrical device based on assemblies of these Au@SCO NPs also support this spin transition. Thus, a large change in conductance upon spin state switching, as compared with other memory devices based on the pristine SCO NPs, is detected. This results in a large improvement in the sensitivity of the device to the spin transition, with values for the ON/OFF ratio which are an order of magnitude better than the best ones obtained in previous SCO devices.  相似文献   

8.
Semiconducting polymers with π‐conjugated electronic structures have potential application in the large‐scale printable fabrication of high‐performance electronic and optoelectronic devices. However, owing to their poor environmental stability and high‐cost synthesis, polymer semiconductors possess limited device implementation. Here, an approach for constructing a π‐conjugated polymer/graphene composite material to circumvent these limitations is provided, and then this material is patterned into 1D arrays. Driven by the π–π interaction, several‐layer polymers can be adsorbed onto the graphene planes. The low consumption of the high‐cost semiconductor polymers and the mass production of graphene contribute to the low‐cost fabrication of the π‐conjugated polymer/graphene composite materials. Based on the π‐conjugated system, a reduced π–π stacking distance between graphene and the polymer can be achieved, yielding enhanced charge‐transport properties. Owing to the incorporation of graphene, the composite material shows improved thermal stability. More generally, it is believed that the construction of the π‐conjugated composite shows clear possibility of integrating organic molecules and 2D materials into microstructure arrays for property‐by‐design fabrication of functional devices with large area, low cost, and high efficiency.  相似文献   

9.
In this paper, SiO2–Au–Cu2O core/shell/shell nanoparticles were synthesized by reducing gold chloride on 3-amino-propyl-triethoxysilane molecules attached silica nanoparticle cores for several stages. Cu2O nanoparticles were synthesized readily with the size of 4–5 nm using a simple route of sol–gel method Then, they were clung to the surface of Au seeds. The morphology of the resultant particles was studied using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Transmission electron microscopy images demonstrate growth of monodispersed gold seeds and Cu2O nanoparticles in narrow size up to 10 nm and 5 nm, respectively. The presence of gold and Cu2O coating was confirmed by X-ray diffraction, Fourier transform infrared spectroscopy and UV–Vis spectroscopy. Absorption spectroscopy shows considerably 40 nm blue shift in absorption edge for SiO2–Au–Cu2O nanostructure rather than SiO2–Au core/shell nanoparticles.  相似文献   

10.
Zhang G  Wang D  Möhwald H 《Nano letters》2007,7(1):127-132
By using angle-resolved colloidal lithography and O2-plasma etched bilayers of hexagonally packed spheres as templates, we succeeded in fabrication of highly ordered binary arrays of gold nanoparticles with varied shapes, for instance, with a shuttlecock-like shape composed of a small crescent-shaped nanoparticle and a big fan-shaped one. The size and shape of both small and big nanoparticles obtained were manipulated by the plasma etching period and the incidence angle of Au vapor flow. The subsequent thermal annealing led to binary arrays of round Au nanoparticles with a rather narrow distribution in terms of size and shape. Our approach should pave a simple and versatile colloidal way to form binary nanoparticle arrays, holding immense promise for technical applications such as nanoelectronics and nanophotonics.  相似文献   

11.
A simple strategy based on the synergistic modulation of inter‐particle and substrate‐particle interaction is applied for the large‐scale fabrication of two‐dimensional (2D) Au and Ag nanoparticle arrays. The surface charge of the substrate is used to redistribute the double layer electric charges on the particles and to modulate the inter‐particle distance within the 2D nanoparticle arrays on the substrate. The resultant arrays, with a wide range of inter‐particle distances, display tunable plasmonic properties. It can be foreseen that such 2D nanoparticle arrays possess potential applications as multiplexed colorimetric sensors, integrated devices and antennas. Herein, it is demonstrated that these arrays can be employed as wavelength‐selective substrates for multiplexed acquisition of surface‐enhanced Raman scattering (SERS) spectra. This simple one step process provides an attractive and low cost strategy to produce high quality and large area 2D ordered arrays with tunable properties.  相似文献   

12.
Efficiently detecting mechanical deformations within materials is critical in a wide range of devices, from micro‐electromechanical systems to larger structures in the aerospace industry. This communication reports the fabrication of new mechanochromic micrometer‐size capsules enabling the detection of strains. These microcapsules are synthesized using an emulsification approach. They are made of densely packed gold nanoparticles embedded in a spherical silica crust. Billions of these composite spherical microcapsules are fabricated in a single batch. Each microcapsule is an opto‐mechanosensor by itself, and can easily be recovered and incorporated into polymer films. When the films are stretched, the microcapsules are deformed into elongated ellipsoidal shapes and the distance between the Au NPs embedded in their shells concomitantly increases. As the extinction of Au NPs depends on the separation between the Au NPs, microcapsules exhibit different colors when they are elongated. These novel sensitive microcapsules can be used to detect and measure strain in polymer films by outputting color information.  相似文献   

13.
Abstract

Resistive switching devices have garnered significant consideration for their potential use in nanoelectronics and non-volatile memory applications. Here we investigate the nonlinear current–voltage behavior and resistive switching properties of composite nanoparticle films comprising a large collective of metal–insulator–metal junctions. Silver nanoparticles prepared via the polyol process and coated with an insulating polymer layer of tetraethylene glycol were deposited onto silicon oxide substrates. Activation required a forming step achieved through application of a bias voltage. Once activated, the nanoparticle films exhibited controllable resistive switching between multiple discrete low resistance states that depended on operational parameters including the applied bias voltage, temperature and sweep frequency. The films’ resistance switching behavior is shown here to be the result of nanofilament formation due to formative electromigration effects. Because of their tunable and distinct resistance states, scalability and ease of fabrication, nanoparticle films have a potential place in memory technology as resistive random access memory cells.  相似文献   

14.
In this work, near-infrared (NIR)-responsive core–shell gold nanorods/mesoporous silica/reduced graphene oxide (Au/SiO2/rGO) nanoparticles with synergistically enhanced photothermal stability and transition effect had been prepared via electrostatic interaction. Gold nanorods (AuNRs) and rGO were employed as the NIR-responsive components. UV–Vis–NIR extinction spectra revealed that the surface plasmon resonance peak of AuNRs from Au/SiO2/rGO nanohybrids remained unchanged after 9 h NIR exposure. UV–Vis–NIR extinction results also showed that thin silica shell was superior to the thick ones in the photothermal stability improvement of Au/SiO2/rGO nanoparticles. Moreover, the doxorubicin release of Au/SiO2/rGO was more rapid than that of Au/SiO2 upon NIR irradiation, indicating that synergistically enhanced photothermal effect between rGO and AuNRs endowed Au/SiO2/rGO nanoparticles with excellent photothermal transition efficiency. Such novel NIR-responsive core–shell hybrid nanoparticles with enhanced photothermal stability and transition effect are well suited for further biological applications, such as photothermal therapy, bioimaging and drug delivery.  相似文献   

15.
The development of highly active electrocatalysts is crucial for the advancement of renewable energy conversion devices. The design of core–shell nanoparticle catalysts represents a promising approach to boost catalytic activity as well as save the use of expensive precious metals. Here, a simple, one‐step synthetic route is reported to prepare hexagonal nanosandwich‐shaped Ni@Ru core–shell nanoparticles (Ni@Ru HNS), in which Ru shell layers are overgrown in a regioselective manner on the top and bottom, and around the center section of a hexagonal Ni nanoplate core. Notably, the synthesis can be extended to NiCo@Ru core–shell nanoparticles with tunable core compositions (Ni3Cox@Ru HNS). Core–shell HNS structures show superior electrocatalytic activity for the oxygen evolution reaction (OER) to a commercial RuO2 black catalyst, with their OER activity being dependent on their core compositions. The observed trend in OER activity is correlated to the population of Ru oxide (Ru4+) species, which can be modulated by the core compositions.  相似文献   

16.
The selected area electron diffraction (SAED) pattern of magnetic iron oxide core/gold shell nanoparticles has been studied. For the composite particles with mean size less than 10 nm, their SAED pattern is found to be different from either the pattern of pure Fe oxide nanoparticles or that of pure Au particles. Based on the fact that the ring diameters of these composite particles fit the characteristic relation for the fcc structure, the Au atoms on surfaces of the concerned particles are supposed to pack in a way more tightly than they usually do in pure Au nanoparticles. The driving force for this is the coherency strain which enables the shell material at the heterostructured interface to adapt the lattice parameters of the core.  相似文献   

17.
The change in the line widths in the ferromagnetic resonance (FMR) spectra of Co and Ni nanoparticles upon shell formation with noble metals like gold or silver are described. The Ni(core)Ag(shell), Co(core)Ag(shell), and CO(core)Au(shell) nanoparticles were prepared by a simple transmetallation reaction between the Co and Ni nanoparticles and the Ag+ or AuCl4- ions. It is revealed that the FMR line width decreases upon Ag shell formation whereas it increases upon core-shell composite formation with Au. Several probable explanations such as the differences in size distributions before and after the reaction or the changes occurring in shape anisotropy of the particles due to the shell formation or the different extents of electronic interaction between the core and shell materials have been offered for this observation.  相似文献   

18.
In this work, a route for the synthesis of inorganic/polymer core/shell composite nanoparticles was proposed, which can be called the antisolvent-ultrasound method. Compressed CO2 was used as antisolvent to precipitate the polymer from its solution dispersed with inorganic nanoparticles, during which ultrasonic irradiation was used to induce the coating of precipitated polymers on the surfaces of the inorganic nanoparticles. TiO2/polystyrene (PS) core/shell nanocomposites have been successfully prepared using this method. The transmission electronic micrographs (TEM) of the obtained nanocomposites show that the TiO2 nanoparticles are coated by the PS shells, of which the thickness can be tuned by the pressure of CO2. The phase structure, absorption properties, and thermal stability of the composite were characterized by X-ray diffraction (XRD), UV-vis spectra, and thermogravimetry, respectively. The results of X-ray photoelectron spectra (XPS) indicate the formation of a strong interaction between PS and TiO2 nanoparticles in the resultant products. This method has some potential advantages for applications and may be easily applied to the preparation of a range of inorganic/polymer core/shell composite nanoparticles.  相似文献   

19.
Poly(3,4-ethylenedioxithiophene)/poly(styrene sulphonate) (PEDOT/PSS) aqueous dispersions were mixed with aqueous gold nanoparticle and aqueous silver nanoparticle colloids. PEDOT/gold nanoparticles (Au NP) and PEDOT/silver nanoparticles (Ag NP) films were obtained by solvent casting the corresponding aqueous solutions. The nanocomposite films showed the optical characteristics associated with both the surface plasmon absorption resonance of the metal nanoparticles and the excitation of the bipolaron band of the conducting polymer. As an interesting application we demonstrate the use of metal nanoparticles to tune the color of PEDOT based electrochromic films from blue to violet in the case of Au NP or green in the case of Ag NP.  相似文献   

20.
A novel technique is reported for fabricating silicon/polymer composite nanopost arrays by combining colloidal lithography and surface-initiated atom-transfer radical polymerization. The composite nanopost arrays possess a core/shell nanoarchitecture, with shells of poly(2-hydroxyethyl methacrylate) and cores of silicon nanoposts. The polymer brush possesses quasi-3D homogeneous nanoarchitectures due to the controllable polymerization process using the surface-initiated atom-transfer radical polymerization technique. The composite nanopost arrays are durable due to the particular nanoarchitectures. The backbone templates of the composites are silicon nanopost arrays directly etched from silicon substrates, and the polymer shell is covalently grafted from the arrays. The composite nanopost arrays exhibit vivid colors. Moreover, the colors of the composite nanopost arrays can be tuned from green to red by changing the thickness of fi lm. Specifically, the composite nanopost arrays can be used as sensors to rapidly detect water vapors with high stability and reproducibility. Many different functional surfaces could be prepared through this technique using other functional monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号