首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Metal complexes are widely used as anticancer drugs, while the severe side effects of traditional chemotherapy require new therapeutic modalities. Sonodynamic therapy (SDT) provides a significantly noninvasive ultrasound (US) treatment approach by activating sonosensitizers and initiating reactive oxygen species (ROS) to damage malignant tissues. In this work, three metal 4‐methylphenylporphyrin (TTP) complexes (MnTTP, ZnTTP, and TiOTTP) are synthesized and encapsulated with human serum albumin (HSA) to form novel nanosonosensitizers. These nanosonosensitizers generate abundant singlet oxygen (1O2) under US irradiation, and importantly show excellent US‐activatable abilities with deep‐tissue depths up to 11 cm. Compared to ZnTTP‐HSA and TiOTTP‐HSA, MnTTP‐HSA exhibits the strongest ROS‐activatable behavior due to the lowest highest occupied molecular orbital?lowest unoccupied molecular orbital gap energy by density functional theory. It is also effective for deep‐tissue photoacoustic/magnetic resonance dual‐modal imaging to trace the accumulation of nanoparticles in tumors. Moreover, MnTTP‐HSA intriguingly achieves high SDT efficiency for simultaneously suppressing the growth of bilateral tumors away from ultrasound source in mice. This work develops a deep‐tissue imaging‐guided SDT strategy through well‐defined metalloporphyrin nanocomplexes and paves a new way for highly efficient noninvasive SDT treatments of malignant tumors.  相似文献   

2.
Covalent organic frameworks (COF) or metal–organic frameworks have attracted significant attention for various applications due to their intriguing tunable micro/mesopores and composition/functionality control. Herein, a coordination‐induced interlinked hybrid of imine‐based covalent organic frameworks and Mn‐based metal–organic frameworks (COF/Mn‐MOF) based on the Mn? N bond is reported. The effective molecular‐level coordination‐induced compositing of COF and MOF endows the hybrid with unique flower‐like microsphere morphology and superior lithium‐storage performances that originate from activated Mn centers and the aromatic benzene ring. In addition, hollow or core–shell MnS trapped in N and S codoped carbon (MnS@NS‐C‐g and MnS@NS‐C‐l) are also derived from the COF/Mn‐MOF hybrid and they exhibit good lithium‐storage properties. The design strategy of COF–MOF hybrid can shed light on the promising hybridization on porous organic framework composites with molecular‐level structural adjustment, nano/microsized morphology design, and property optimization.  相似文献   

3.
Metal–organic frameworks (MOFs) have become a research hotspot since they have been explored as convenient precursors for preparing various multifunctional nanomaterials. However, the preparation of MOF networks with controllable flake morphology in large scale is not realized yet. Herein, a self‐template strategy is developed to prepare MOF networks. In this work, layered double‐metal hydroxide (LDH) and other layered metal hydroxides are used not only as a scaffold but also as a self‐sacrificed metal source. After capturing the abundant metal cations identically from the LDH by the organic linkers, MOF networks are in situ formed. It is interesting that the MOF network‐derived carbon materials retain the flake morphology and exhibit a unique honeycomb‐like macroporous structure due to the confined shrinkage of the polyhedral facets. The overall properties of the carbon networks are adjustable according to the tailored metal compositions in LDH and the derived MOFs, which are desirable for target‐oriented applications as exemplified by the electrochemical application in supercapacitors.  相似文献   

4.
Metal–organic frameworks (MOFs) are very promising self‐sacrificing templates for the large‐scale fabrication of new functional materials owing to their versatile functionalities and tunable porosities. Most conventional metal oxide electrodes derived from MOFs are limited by the low abundance of incorporated metal elements. This study reports a new strategy for the synthesis of multicomponent active metal oxides by the pyrolysis of polymetallic MOF precursors. A hollow N‐doped carbon‐coated ZnO/ZnCo2O4/CuCo2O4 nanohybrid is prepared by the thermal annealing of a polymetallic MOF with ammonium bicarbonate as a pore‐forming agent. This is the first report on the rational design and preparation of a hybrid composed of three active metal oxide components originating from MOF precursors. Interestingly, as a lithium‐ion battery anode, the developed electrode delivers a reversible capacity of 1742 mAh g?1 after 500 cycles at a current density of 0.3 mA g?1. Furthermore, the material shows large storage capacities (1009 and 667 mAh g?1), even at high current flow (3 and 10 A g?1). The remarkable high‐rate capability and outstanding long‐life cycling stability of the multidoped metal oxide benefits from the carbon‐coated integrated nanostructure with a hollow interior and the three active metal oxide components.  相似文献   

5.
Direct use of metal–organic frameworks (MOFs) with robust pore structures, large surface areas, and high density of coordinatively unsaturated metal sites as electrochemical active materials is highly desirable (rather than using as templates and/or precursors for high‐temperature calcination), but this is practically hindered by the poor conductivity and low accessibility of active sites in the bulk form. Herein, a universal vapor‐phase method is reported to grow well‐aligned MOFs on conductive carbon cloth (CC) by using metal hydroxyl fluorides with diverse morphologies as self‐sacrificial templates. Specifically, by further partially on‐site generating active Co3S4 species from Co ions in the echinops‐like Co‐based MOF (EC‐MOF) through a controlled vulcanization approach, the resulting Co3S4/EC‐MOF hybrid exhibits much enhanced electrocatalytic performance toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with overpotentials of 84 and 226 mV required to reach a current density of 10 mA cm?2, respectively. Density functional theory (DFT) calculations and experimental results reveal that the electron transfer between Co3S4 species and EC‐MOF can decrease the electron density of the Co d‐orbital, resulting in more electrocatalytically optimized adsorption properties for Co. This study will open up a new avenue for designing highly ordered MOF‐based surface active materials for various electrochemical energy applications.  相似文献   

6.
Metal–organic framework (MOF) composites have recently been considered as promising precursors to derive advanced metal/carbon‐based materials for various energy‐related applications. Here, a dual‐MOF‐assisted pyrolysis approach is developed to synthesize Co–Fe alloy@N‐doped carbon hollow spheres. Novel core–shell architectures consisting of polystyrene cores and Co‐based MOF composite shells encapsulated with discrete Fe‐based MOF nanocrystallites are first synthesized, followed by a thermal treatment to prepare hollow composite materials composed of Co–Fe alloy nanoparticles homogeneously distributed in porous N‐doped carbon nanoshells. Benefitting from the unique structure and composition, the as‐derived Co–Fe alloy@N‐doped carbon hollow spheres exhibit enhanced electrocatalytic performance for oxygen reduction reaction. The present approach expands the toolbox for design and preparation of advanced MOF‐derived functional materials for diverse applications.  相似文献   

7.
Metal–organic framework (MOF) is highly desirable as a functional material owing to its low density, tunable pore size, and diversity of coordination formation, but limited by the poor dielectric properties. Herein, by controlling the solvent and mole ratio of cobalt/linker, multidimension‐controllable MOF‐derived nitrogen‐doped carbon materials exhibit tunable morphology from sheet‐, flower‐, cube‐, dodecahedron‐ to octahedron‐like. Tunable electromagnetic parameters of Co@N‐doped carbon composites (Co@NC) can be obtained and the initial MOF precursor determines the distribution of carbon framework and magnetic cobalt nanoparticles. Carbonized Co@NC composites possess the following advantages: i) controllable dimension and morphology to balance the electromagnetic properties with evenly charged density distribution; ii) magnetic‐carbon composites offer plenty of interfacial polarization and strong magnetic coupling network; iii) a MOF‐derived dielectric carbon skeleton provides electronic transportation paths and enhances conductive dissipation. Surface‐mediated magnetic coupling reflects the stray magnetic flux field, which is corroborated by the off‐axis electron holography and micro‐magnetic simulation. Optimized octadecahedral Co@NC sample exhibits the best microwave absorption (MA) of ?53.0 dB at the thickness of 1.8 mm and broad effective frequency from 11.4 to 17.6 GHz (Ku‐band). These results pave the way to fabricate high‐performance MA materials with balanced electromagnetic distribution and controlled morphology.  相似文献   

8.
Recently, sodium‐ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium‐ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal–organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF‐derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium‐ion storage performances of MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF‐derived materials in electrochemical energy storage are discussed.  相似文献   

9.
Carbon materials derived from metal–organic frameworks (MOFs) have attracted much attention in the field of scientific research in recent years because of their advantages of excellent electron conductivity, high porosity, and diverse applications. Tremendous efforts are devoted to improving their chemical and physical properties, including optimizing the morphology and structure of the carbon materials, compositing them with other materials, and so on. Here, many kinds of carbon materials derived from metal–organic frameworks are introduced with a particular focus on their promising applications in batteries (lithium‐ion batteries, lithium–sulfur batteries, and sodium‐ion batteries), supercapacitors (metal oxide/carbon and metal sulfide/carbon), electrocatalytic reactions (oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction), water treatment (MOF‐derived carbon and other techniques), and other possible fields. To close, some existing problem and corresponding possible solutions are proposed based on academic knowledge from the reported literature, along with a great deal of experimental experience.  相似文献   

10.
Abatement of chemical hazards using adsorptive metal‐organic frameworks (MOFs) attracts substantial attention, but material stability and crystal integration into functional systems remain key challenges. Herein, water‐stable, polymer fiber surface–oriented M–TCPP [M = Cu, Zn, and Co; H2TCPP = 5,10,15,20‐tetrakis(4‐carboxyphenyl)porphyrin] 2D MOF crystals are fabricated using a facile hydroxy double salt (HDS) solid‐source conversion strategy. For the first time, Cu–TCPP is formed from a solid source and confirmed to be highly adsorptive for NH3 and 2‐chloroethyl ethyl sulfide (CEES), a blistering agent simulant, in humid (80% relative humidity (RH)) conditions. Moreover, the solid HDS source is found as a unique new approach to control MOF thin‐film crystal orientation, thereby facilitating radially arranged MOF crystals on fibers. On a per unit mass of MOF basis in humid conditions, the MOF/fiber composite enhances NH3 adsorptive capacity by a factor of 3 compared to conventionally prepared MOF powders. The synthesis route extends to other MOF/fiber composite systems, therefore providing a new route for chemically protective materials.  相似文献   

11.
Core–multishelled structures with controlled chemical composition have attracted great interest due to their fascinating electrochemical performance. Herein, a metal–organic framework (MOF)‐on‐MOF self‐templated strategy is used to fabricate okra‐like bimetal sulfide (Fe7S8/C@ZnS/N‐C@C) with core–double‐shelled structure, in which Fe7S8/C is distributed in the cores, and ZnS is embedded in one of the layers. The MOF‐on‐MOF precursor with an MIL‐53 core, a ZIF‐8 shell, and a resorcinol–formaldehyde (RF) layer (MIL‐53@ZIF‐8@RF) is prepared through a layer‐by‐layer assembly method. After calcination with sulfur powder, the resultant structure has a hierarchical carbon matrix, abundant internal interface, and tiered active material distribution. It provides fast sodium‐ion reaction kinetics, a superior pseudocapacitance contribution, good resistance of volume changes, and stepwise sodiation/desodiation reaction mechanism. As an anode material for sodium‐ion batteries, the electrochemical performance of Fe7S8/C@ZnS/N‐C@C is superior to that of Fe7S8/C@ZnS/N‐C, Fe7S8/C, or ZnS/N‐C. It delivers a high and stable capacity of 364.7 mAh g?1 at current density of 5.0 A g?1 with 10 000 cycles, and registers only 0.00135% capacity decay per cycle. This MOF‐on‐MOF self‐templated strategy may provide a method to construct core–multishelled structures with controlled component distributions for the energy conversion and storage.  相似文献   

12.
Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal–organic frameworks (MOFs) have attracted much attention as CO2 photoreduction‐related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light‐absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF‐based photocatalysts are discussed here, beginning with the introduction of the characteristics of high‐efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti–O, Zr–O, and Fe–O clusters and functional organic linkers such as amino‐modified, photosensitizer‐functionalized, and electron‐rich conjugated linkers) and three types of MOF‐based composites (metal–MOF, semiconductor–MOF, and photosensitizer–MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF‐based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion.  相似文献   

13.
Metal–organic frameworks (MOFs) and MOF‐derived materials have recently attracted considerable interest as alternatives to noble‐metal electrocatalysts. Herein, the rational design and synthesis of a new class of Co@N‐C materials (C‐MOF‐C2‐T) from a pair of enantiotopic chiral 3D MOFs by pyrolysis at temperature T is reported. The newly developed C‐MOF‐C2‐900 with a unique 3D hierarchical rodlike structure, consisting of homogeneously distributed cobalt nanoparticles encapsulated by partially graphitized N‐doped carbon rings along the rod length, exhibits higher electrocatalytic activities for oxygen reduction and oxygen evolution reactions (ORR and OER) than that of commercial Pt/C and RuO2, respectively. Primary Zn–air batteries based on C‐MOF‐900 for the oxygen reduction reaction (ORR) operated at a discharge potential of 1.30 V with a specific capacity of 741 mA h gZn–1 under 10 mA cm–2. Rechargeable Zn–air batteries based on C‐MOF‐C2‐900 as an ORR and OER bifunctional catalyst exhibit initial charge and discharge potentials at 1.81 and 1.28 V (2 mA cm–2), along with an excellent cycling stability with no increase in polarization even after 120 h – outperform their counterparts based on noble‐metal‐based air electrodes. The resultant rechargeable Zn–air batteries are used to efficiently power electrochemical water‐splitting systems, demonstrating promising potential as integrated green energy systems for practical applications.  相似文献   

14.
Herein, a new type of cobalt encapsulated nitrogen‐doped carbon (Co@NC) nanostructure employing ZnxCo1?x(C3H4N2) metal–organic framework (MOF) as precursor is developed, by a simple, ecofriendly, solvent‐free approach that utilizes a mechanochemical coordination self‐assembly strategy. Possible evolution of ZnxCo1?x(C3H4N2) MOF structures and their conversion to Co@NC nanostructures is established from an X‐ray diffraction technique and transmission electron microscopy analysis, which reveal that MOF‐derived Co@NC core–shell nanostructures are well ordered and highly crystalline in nature. Co@NC–MOF core–shell nanostructures show excellent catalytic activity for the oxygen reduction reaction (ORR), with onset potential of 0.97 V and half‐wave potential of 0.88 V versus relative hydrogen electrode in alkaline electrolyte, and excellent durability with zero degradation after 5000 potential cycles; whereas under similar experimental conditions, the commonly utilized Pt/C electrocatalyst degrades. The Co@NC–MOF electrocatalyst also shows excellent tolerance to methanol, unlike the Pt/C electrocatalyst. X‐ray photoelectron spectroscopy (XPS) analysis shows the presence of ORR active pyridinic‐N and graphitic‐N species, along with CoNx? Cy and Co? Nx ORR active (M–N–C) sites. Enhanced electron transfer kinetics from nitrogen‐doped carbon shell to core Co nanoparticles, the existence of M–N–C active sites, and protective NC shells are responsible for high ORR activity and durability of the Co@NC–MOF electrocatalyst.  相似文献   

15.
In recent years, metal–organic frameworks (MOFs) have received extensive interest because of the diversity of their composition, structure, and function. To promote the MOFs' function and performance, the construction of hollow structural metal–organic frameworks and nanoparticle–MOF composites is significantly effective but remains a considerable challenge. In this article, a transformation strategy is developed to synthesize hollow structural Co‐MOF‐74 by solvothermal transformation of ZIF‐67. These Co‐MOF‐74 particles exhibit a double‐layer hollow shell structure without remarkable shape change compared to original ZIF‐67 particles. The formation of hollow structure stemmed from the density difference of Co between ZIF‐67 and Co‐MOF‐74. By this strategy, hollow structural Co‐MOF‐74 with different sizes and shapes are obtained from corresponding ZIF‐67, and metal nanoparticles@Co‐MOF‐74 is synthesized by corresponding nanoparticles@Co‐ZIF‐67. To verify the structural advantages of hollow structural Co‐MOF‐74 and Ag nanoparticles@Co‐MOF‐74, photocatalytic CO2 reduction is used as a model reaction. Conventionally synthesized Co‐MOF‐74 (MOF‐74‐C), hollow structural Co‐MOF‐74 synthesized by transformation method (MOF‐74‐T) and Ag nanoparticles@Co‐MOF‐74 (AgNPs@MOF‐74) are used as cocatalysts in this reaction. As a result, the cocatalytic activity of MOF‐74‐T and AgNPs@MOF‐74 is 1.8 times and 3.8 times that of MOF‐74‐C, respectively.  相似文献   

16.
Lithium–sulfur (Li–S) batteries have attracted much attention in the field of electrochemical energy storage due to their high energy density and low cost. However, the “shuttle effect” of the sulfur cathode, resulting in poor cyclic performance, is a big barrier for the development of Li–S batteries. Herein, a novel sulfur cathode integrating sulfur, flexible carbon cloth, and metal–organic framework (MOF)‐derived N‐doped carbon nanoarrays with embedded CoP (CC@CoP/C) is designed. These unique flexible nanoarrays with embedded polar CoP nanoparticles not only offer enough voids for volume expansion to maintain the structural stability during the electrochemical process, but also promote the physical encapsulation and chemical entrapment of all sulfur species. Such designed CC@CoP/C cathodes with synergistic confinement (physical adsorption and chemical interactions) for soluble intermediate lithium polysulfides possess high sulfur loadings (as high as 4.17 mg cm–2) and exhibit large specific capacities at different C‐rates. Specially, an outstanding long‐term cycling performance can be reached. For example, an ultralow decay of 0.016% per cycle during the whole 600 cycles at a high current density of 2C is displayed. The current work provides a promising design strategy for high‐energy‐density Li–S batteries.  相似文献   

17.
Carbon micro‐/nanocages have attracted great attention owing to their wide potential applications. Herein, a self‐templated strategy is presented for the synthesis of a hydrangea‐like superstructure of open carbon cages through morphology‐controlled thermal transformation of core@shell metal–organic frameworks (MOFs). Direct pyrolysis of core@shell zinc (Zn)@cobalt (Co)‐MOFs produces well‐defined open‐wall nitrogen‐doped carbon cages. By introducing guest iron (Fe) ions into the core@shell MOF precursor, the open carbon cages are self‐assembled into a hydrangea‐like 3D superstructure interconnected by carbon nanotubes, which are grown in situ on the Fe–Co alloy nanoparticles formed during the pyrolysis of Fe‐introduced Zn@Co‐MOFs. Taking advantage of such hierarchically porous superstructures with excellent accessibility, synergetic effects between the Fe and the Co, and the presence of catalytically active sites of both metal nanoparticles and metal–Nx species, this superstructure of open carbon cages exhibits efficient bifunctional catalysis for both oxygen evolution reaction and oxygen reduction reaction, achieving a great performance in Zn–air batteries.  相似文献   

18.
Utilization of microbes as the carbon source and structural template to fabricate porous carbon has incentivized great interests owing to their diverse micromorphology and intricate intracellular structure, apart from the obvious benefit of “turning waste into wealth.” Challenges remain to preserve the biological structure through the harsh and laborious post‐synthetic treatments, and tailor the functionality as desired. Herein, Escherichia coli is directly coated with metal–organic frameworks (MOFs) through in situ assembly to fabricate N, P co‐doped porous carbon capsules expressing self‐phosphorized metal phosphides. While the MOF coating serves as an armoring layer for facilitating the morphology inheritance from the bio‐templates and provides metal sources for generating extra porosity and electrochemically active sites, the P‐rich phospholipids and N‐rich proteins from the plasma membrane enable carbon matrix doping and further yield metal phosphides. These unique structural and compositional features endow the carbon capsules with great capabilities in suppressing polysulfide shuttling and catalyzing reversible oxygen conversion, ultimately leading to the superb performance of lithium–sulfur batteries and zinc–air batteries. Combining the bio‐templating strategy with hierarchical MOF assembly, this work opens a new avenue for the fabrication of highly porous and functional carbon for advanced energy applications.  相似文献   

19.
DNA‐mediated assembly of core–satellite structures composed of Zr(IV)‐based porphyrinic metal‐organic framework (MOF) and NaYF4,Yb,Er upconverting nanoparticles (UCNPs) for photodynamic therapy (PDT) is reported. MOF NPs generate singlet oxygen (1O2) upon photoirradiation with visible light without the need for additional small molecule, diffusional photosensitizers such as porphyrins. Using DNA as a templating agent, well‐defined MOF–UCNP clusters are produced where UCNPs are spatially organized around a centrally located MOF NP. Under NIR irradiation, visible light emitted from the UCNPs is absorbed by the core MOF NP to produce 1O2 at significantly greater amounts than what can be produced from simply mixing UCNPs and MOF NPs. The MOF–UCNP core–satellite superstructures also induce strong cell cytotoxicity against cancer cells, which are further enhanced by attaching epidermal growth factor receptor targeting affibodies to the PDT clusters, highlighting their promise as theranostic photodynamic agents.  相似文献   

20.
Over the past two decades, metal–organic frameworks (MOFs), a type of porous material, have aroused great interest as precursors or templates for the derivation of metal oxides and composites for the next generation of electrochemical energy storage applications owing to their high specific surface areas, controllable structures, and adjustable pore sizes. The electrode materials, which affect the performance in practical applications, are pivotal components of batteries and supercapacitors. Metal oxide composites derived from metal–organic frameworks possessing high reversible capacity and superior rate and cycle performance are excellent electrode materials. In this Review, potential applications for MOF‐derived metal oxide composites for lithium‐ion batteries, sodium‐ion batteries, lithium–oxygen batteries, and supercapacitors are studied and summarized. Finally, the challenges and opportunities for future research on MOF‐derived metal oxide composites are proposed on the basis of academic knowledge from the reported literature as well as from experimental experience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号