首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fiber supercapacitors (FSCs) are promising energy storage devices in portable and wearable smart electronics. Currently, a major challenge for FSCs is simultaneously achieving high volumetric energy and power densities. Herein, the microscale fiber electrode is designed by using carbon fibers as substrates and capillary channels as microreactors to space‐confined hydrothermal assembling. As P‐doped graphene oxide/carbon fiber (PGO/CF) and NiCo2O4‐based graphene oxide/carbon fiber (NCGO/CF) electrodes are successfully prepared, their unique hybrid structures exhibit a satisfactory electrochemical performance. An all‐solid‐state PGO/CF//NCGO/CF flexible asymmetric fiber supercapacitor (AFSC) based on the PGO/CF as the negative electrode, NCGO/CF hybrid electrode as the positive electrode, and poly(vinyl alcohol)/potassium hydroxide as the electrolyte is successfully assembled. The AFSC device delivers a higher volumetric energy density of 36.77 mW h cm?3 at a power density of 142.5 mW cm?3. In addition, a double reference electrode system is adopted to analyze and reduce the IR drop, as well as effectively matching negative and positive electrodes, which is conducive for the optimization and improvement of energy density. For the AFSC device, its better flexibility and electrochemical properties create a promising potential for high‐performance micro‐supercapacitors. Furthermore, the introduction of the double reference electrode system provides an interesting method for the study on the electrochemical performances of two‐electrode systems.  相似文献   

2.
Compactness and versatility of fiber‐based micro‐supercapacitors (FMSCs) make them promising for emerging wearable electronic devices as energy storage solutions. But, increasing the energy storage capacity of microscale fiber electrodes, while retaining their high power density, remains a significant challenge. Here, this issue is addressed by incorporating ultrahigh mass loading of ruthenium oxide (RuO2) nanoparticles (up to 42.5 wt%) uniformly on nanocarbon‐based microfibers composed largely of holey reduced graphene oxide (HrGO) with a lower amount of single‐walled carbon nanotubes as nanospacers. This facile approach involes (1) space‐confined hydrothermal assembly of highly porous but 3D interconnected carbon structure, (2) impregnating wet carbon structures with aqueous Ru3+ ions, and (3) anchoring RuO2 nanoparticles on HrGO surfaces. Solid‐state FMSCs assembled using those fibers demonstrate a specific volumetric capacitance of 199 F cm?3 at 2 mV s?1. Fabricated FMSCs also deliver an ultrahigh energy density of 27.3 mWh cm?3, the highest among those reported for FMSCs to date. Furthermore, integrating 20 pieces of FMSCs with two commercial flexible solar cells as a self‐powering energy system, a light‐emitting diode panel can be lit up stably. The current work highlights the excellent potential of nano‐RuO2‐decorated HrGO composite fibers for constructing micro‐supercapacitors with high energy density for wearable electronic devices.  相似文献   

3.
Solar‐driven evaporation is a promising way of using abundant solar energy for desalinating polluted water or seawater, which addresses the challenge of global fresh water scarcity. Cost‐effectiveness and durability are key factors for practical solar‐driven evaporation technology. The present cutting‐edge techniques mostly rely on costly and complex fabricated nanomaterials, such as metallic nanoparticles, nanotubes, nanoporous hydrogels, graphene, and graphene derivatives. Herein, a black nylon fiber (BNF) flocking board with a vertically aligned array prepared via a convenient electrostatic flocking technique is reported, presenting an extremely high solar absorbance (99.6%), a water self‐supply capability, and a unique salt self‐dissolution capability for seawater desalination. Through a carefully designed 3D structure, a plug‐in‐type BNF flocking board steam generator realizes a high evaporation rate of 2.09 kg m?2 h?1 under 1 kW m?2 solar illumination, well beyond its corresponding upper limit of 1.50 kg m?2 h?1 (assuming 100% solar energy is being used for evaporation latent heat). With the advantages of high‐efficiency fabrication, cost‐effectiveness, high evaporation rate, and high endurance in seawater desalination, this 3D design provides a new strategy to build up an economic, sustainable, and rapid solar‐driven steam generation system.  相似文献   

4.
Nanocarbon electronic conductors combined with pseudocapacitive materials, such as conducting polymers, display outstanding electrochemical properties and mechanical flexibility. These characteristics enable the fabrication of flexible electrodes for energy‐storage devices; that is, supercapacitors that are wearable or can be formed into shapes that are easily integrated into vehicle parts. To date, most nanocarbon materials such as nanofibers are randomly dispersed as a network in a flexible matrix. This morphology inhibits ion transport, particularly under the high current density necessary for devices requiring high power density. Novel flexible densified horizontally aligned carbon nanotube arrays (HACNTs) with controlled nanomorphology for improved ion transport are introduced and combined with conformally coated poly(3‐methylthiophene) (P3MT) conducting polymer to impart pseudocapacitance. The resulting P3MT/HACNT nanocomposite electrodes exhibit high areal capacitance of 3.1 F cm?2 at 5 mA cm?2, with areal capacitance remaining at 1.8 F cm?2 even at a current density of 200 mA cm?2. The asymmetric supercapacitor cell also delivers more than 1–2 orders of magnitude improvement in both areal energy and power density over state‐of‐the‐art cells. Furthermore, little change in cell performance is observed under high strain, demonstrating the mechanical and electrochemical stability of the electrodes.  相似文献   

5.
An N‐superdoped 3D graphene network structure with an N‐doping level up to 15.8 at% for high‐performance supercapacitor is designed and synthesized, in which the graphene foam with high conductivity acts as skeleton and nested with N‐superdoped reduced graphene oxide arogels. This material shows a highly conductive interconnected 3D porous structure (3.33 S cm?1), large surface area (583 m2 g?1), low internal resistance (0.4 Ω), good wettability, and a great number of active sites. Because of the multiple synergistic effects of these features, the supercapacitors based on this material show a remarkably excellent electrochemical behavior with a high specific capacitance (of up to 380, 332, and 245 F g?1 in alkaline, acidic, and neutral electrolytes measured in three‐electrode configuration, respectively, 297 F g?1 in alkaline electrolytes measured in two‐electrode configuration), good rate capability, excellent cycling stability (93.5% retention after 4600 cycles), and low internal resistance (0.4 Ω), resulting in high power density with proper high energy density.  相似文献   

6.
Bromine‐based flow batteries are well suited for stationary energy storage due to attractive features of high energy density and low cost. However, the bromine‐based flow battery suffers from low power density and large materials consumption due to the relatively high polarization of the Br2/Br? couple on the electrodes. Herein, a self‐supporting 3D hierarchical composite electrode based on a TiN nanorod array is designed to improve the activity of the Br2/Br? couple and increase the power density of the bromine‐based flow battery. In this design, a carbon felt provides a composite electrode with a 3D electron conductive framework to guarantee high electronic conductivity, while the TiN nanorods possess excellent catalytic activity for the Br2/Br? electrochemical reaction to reduce the electrochemical polarization. Moreover, the 3D micro–nano hierarchical nanorod‐array alignment structure contributes to a high electrolyte penetration and a high ion‐transfer rate to reduce diffusion polarization. As a result, a zinc–bromine flow battery with the designed composite electrode can be operated at a current density of up to 160 mA cm?2, which is the highest current density ever reported. These results exhibit a promising strategy to fabricate electrodes for ultrahigh‐power‐density bromine‐based flow batteries and accelerate the development of bromine‐based flow batteries.  相似文献   

7.
Flexible 3D nanoarchitectures have received tremendous interest recently because of their potential applications in flexible/wearable energy storage devices. Herein, 3D intertwined nitrogen‐doped carbon encapsulated mesoporous vanadium nitride nanowires (MVN@NC NWs) are investigated as thin, lightweight, and self‐supported electrodes for flexible supercapacitors (SCs). The MVN NWs have abundant active sites accessible to charge storage, and the N‐doped carbon shell suppresses electrochemical dissolution of the inner MVN NWs in an alkaline electrolyte, leading to excellent capacitive properties. The flexible MVN@NC NWs film electrode delivers a high areal capacitance of 282 mF cm−2 and exhibits excellent long‐term stability with 91.8% capacitance retention after 12 000 cycles in a KOH electrolyte. All‐solid‐state flexible SCs assembled by sandwiching two flexible MVN@NC NWs film electrodes with alkaline poly(vinyl alcohol) (PVA), sodium polyacrylate, and KOH gel electrolyte boast a high volumetric capacitance of 10.9 F cm−3, an energy density of 0.97 mWh cm−3, and a power density of 2.72 W cm−3 at a current density of 0.051 A cm−3 based on the entire cell. By virtue of the excellent mechanical flexibility, high capacitance, and large energy/power density, the self‐supported MVN@NC NWs paper‐like electrodes have large potential applications in portable and wearable flexible electronics.  相似文献   

8.
Graphene fiber based micro‐supercapacitors (GF micro‐SCs) have attracted great attention for their potential applications in portable and wearable electronics. However, due to strong π–π stacking of nanosheets for graphene fibers, the limited ion accessible surface area and slow ion diffusion rate leads to low specific capacitance and poor rate performance. Here, the authors report a strategy for the synthesis of a vertically oriented graphene nanoribbon fiber with highly exposed surface area through confined‐hydrothermal treatment of interconnected graphene oxide nanoribbons and consequent laser irradiation process. As a result, the as‐obtained fiber shows high length specific capacitance of 3.2 mF cm?1 and volumetric capacitance of 234.8 F cm?3 at 2 mV s?1, as well as excellent rate capability and outstanding cycling performance (96% capacitance retention after 10 000 cycles). Moreover, an all‐solid‐state asymmetric supercapacitor based on graphene nanoribbon fiber as negative electrode and MnO2 coated graphene ribbon fiber as positive electrode, shows high volumetric capacitance and energy density of 12.8 F cm?3 and 5.7 mWh cm?3 (normalized to the device volume), respectively, much higher than those of previously reported GF micro‐SCs, as well as a long cycle life with 88% of capacitance retention after 10 000 cycles.  相似文献   

9.
A novel hybrid Li‐ion capacitor (LIC) with high energy and power densities is constructed by combining an electrochemical double layer capacitor type cathode (graphene hydrogels) with a Li‐ion battery type anode (TiO2 nanobelt arrays). The high power source is provided by the graphene hydrogel cathode, which has a 3D porous network structure and high electrical conductivity, and the counter anode is made of free‐standing TiO2 nanobelt arrays (NBA) grown directly on Ti foil without any ancillary materials. Such a subtle designed hybrid Li‐ion capacitor allows rapid electron and ion transport in the non‐aqueous electrolyte. Within a voltage range of 0.0?3.8 V, a high energy of 82 Wh kg?1 is achieved at a power density of 570 W kg?1. Even at an 8.4 s charge/discharge rate, an energy density as high as 21 Wh kg?1 can be retained. These results demonstrate that the TiO2 NBA//graphene hydrogel LIC exhibits higher energy density than supercapacitors and better power density than Li‐ion batteries, which makes it a promising electrochemical power source.  相似文献   

10.
High‐performance yet flexible micro‐supercapacitors (MSCs) hold great promise as miniaturized power sources for increasing demand of integrated electronic devices. Herein, this study demonstrates a scalable fabrication of multilayered graphene‐based MSCs (MG‐MSCs), by direct laser writing (DLW) of stacked graphene films made from industry‐scale chemical vapor deposition (CVD). Combining the dry transfer of multilayered CVD graphene films, DLW allows a highly efficient fabrication of large‐areal MSCs with exceptional flexibility, diverse planar geometry, and capability of customer‐designed integration. The MG‐MSCs exhibit simultaneously ultrahigh energy density of 23 mWh cm?3 and power density of 1860 W cm?3 in an ionogel electrolyte. Notably, such MG‐MSCs demonstrate an outstanding flexible alternating current line‐filtering performance in poly(vinyl alcohol) (PVA)/H2SO4 hydrogel electrolyte, indicated by a phase angle of ?76.2° at 120 Hz and a resistance–capacitance constant of 0.54 ms, due to the efficient ion transport coupled with the excellent electric conductance of the planar MG microelectrodes. MG–polyaniline (MG‐PANI) hybrid MSCs fabricated by DLW of MG‐PANI hybrid films show an optimized capacitance of 3.8 mF cm?2 in PVA/H2SO4 hydrogel electrolyte; an integrated device comprising MG‐MSCs line filtering, MG‐PANI MSCs, and pressure/gas sensors is demonstrated.  相似文献   

11.
A poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS) hydrogel is prepared by thermal treatment of a commercial PEDOT:PSS (PH1000) suspension in 0.1 mol L?1 sulfuric acid followed by partially removing its PSS component with concentrated sulfuric acid. This hydrogel has a low solid content of 4% (by weight) and an extremely high conductivity of 880 S m?1. It can be fabricated into different shapes such as films, fibers, and columns with arbitrary sizes for practical applications. A highly conductive and mechanically strong porous fiber is prepared by drying PEDOT:PSS hydrogel fiber to fabricate a current‐collector‐free solid‐state flexible supercapacitor. This fiber supercapacitor delivers a volumetric capacitance as high as 202 F cm?3 at 0.54 A cm?3 with an extraordinary high‐rate performance. It also shows excellent electrochemical stability and high flexibility, promising for the application as wearable energy‐storage devices.  相似文献   

12.
Compared to traditional metal oxides, metal‐organic frameworks exhibit excellent properties, such as a high surface area, significant thermal stability, low density, and excellent electrochemical performance. Here, a simple process is proposed for the fabrication of rod‐like vanadium metal‐organic frameworks (VIV(O)(bdc), bdc = 1,4‐benzenedicarboxylate, or MIL‐47), and the effect of the structure on the electrochemical performance is investigated via a series of electrochemical measurements. The VIV(O)(bdc) electrode exhibits a maximum specific capacitance of 572.1 F g?1 at current densities of 0.5 A g?1. More significantly, aqueous and solid‐state asymmetric supercapacitors are successfully assembled. The solid‐state device shows an excellent energy density of 6.72 mWh cm?3 at a power density of 70.35 mW cm?3. This superior performance confirms that VIV(O)(bdc) electrodes are promising materials for applications in supercapacitors.  相似文献   

13.
Sodium‐ion batteries (SIBs) have gained tremendous interest for grid scale energy storage system and power energy batteries. However, the current researches of anode for SIBs still face the critical issues of low areal capacity, limited cycle life, and low initial coulombic efficiency for practical application perspective. To solve this issue, a kind of hierarchical 3D carbon‐networks/Fe7S8/graphene (CFG) is designed and synthesized as freestanding anode, which is constructed with Fe7S8 microparticles well‐welded on 3D‐crosslinked carbon‐networks and embedded in highly conductive graphene film, via a facile and scalable synthetic method. The as‐prepared freestanding electrode CFG represents high areal capacity (2.12 mAh cm?2 at 0.25 mA cm?2) and excellent cycle stability of 5000 cycles (0.0095% capacity decay per cycle). The assembled all‐flexible sodium‐ion battery delivers remarkable performance (high areal capacity of 1.42 mAh cm?2 at 0.3 mA cm?2 and superior energy density of 144 Wh kg?1), which are very close to the requirement of practical application. This work not only enlightens the material design and electrode engineering, but also provides a new kind of freestanding high energy density anode with great potential application prospective for SIBs.  相似文献   

14.
Graphene electrode–based supercapacitors are in high demand due to their superior electrochemical characteristics. A major bottleneck of using the supercapacitors for commercial applications lies in their inferior electrode cycle life. Herein, a simple and facile method to fabricate highly efficient supercapacitor electrodes using pristine graphene sheets vertically stacked and electrically connected to the carbon fibers which can result in vertically aligned graphene–carbon fiber nanostructure is developed. The vertically aligned graphene–carbon fiber electrode prepared by electrophoretic deposition possesses a mesoporous 3D architecture which enabled faster and efficient electrolyte‐ion diffusion with a gravimetric capacitance of 333.3 F g?1 and an areal capacitance of 166 mF cm?2. The electrodes displayed superlong electrochemical cycling stability of more than 100 000 cycles with 100% capacitance retention hence promising for long‐lasting supercapacitors. Apart from the electrochemical double layer charge storage, the oxygen‐containing surface moieties and α‐Ni(OH)2 present on the graphene sheets enhance the charge storage by faradaic reactions. This enables the assembled device to provide an excellent gravimetric energy density of 76 W h kg?1 with a 100% capacitance retention even after 1000 bending cycles. This study opens the door for developing high‐performing flexible graphene electrodes for wearable energy storage applications.  相似文献   

15.
Battery‐type materials are promising candidates for achieving high specific capacity for supercapacitors. However, their slow reaction kinetics hinders the improvement in electrochemical performance. Herein, a hybrid structure of P‐doped Co3O4 (P‐Co3O4) ultrafine nanoparticles in situ encapsulated into P, N co‐doped carbon (P, N‐C) nanowires by a pyrolysis–oxidation–phosphorization of 1D metal–organic frameworks derived from Co‐layered double hydroxide as self‐template and reactant is reported. This hybrid structure prevents active material agglomeration and maintains a 1D oriented arrangement, which exhibits a large accessible surface area and hierarchically porous feature, enabling sufficient permeation and transfer of electrolyte ions. Theoretical calculations demonstrate that the P dopants in P‐Co3O4@P, N‐C could reduce the adsorption energy of OH? and regulate the electrical properties. Accordingly, the P‐Co3O4@P, N‐C delivers a high specific capacity of 669 mC cm?2 at 1 mA cm?2 and an ultralong cycle life with only 4.8% loss over 5000 cycles at 30 mA cm?2. During the fabrication of P‐Co3O4@P, N‐C, Co@P, N‐C is simultaneously developed, which can be integrated with P‐Co3O4@P, N‐C for the assembly of asymmetric supercapacitors. These devices achieve a high energy density of 47.6 W h kg?1 at 750 W kg?1 and impressive flexibility, exhibiting a great potential in practical applications.  相似文献   

16.
Additive manufacturing (AM) technologies appear as a paradigm for scalable manufacture of electrochemical energy storage (EES) devices, where complex 3D architectures are typically required but are hard to achieve using conventional techniques. The combination of these technologies and innovative material formulations that maximize surface area accessibility and ion transport within electrodes while minimizing space are of growing interest. Herein, aqueous inks composed of atomically thin (1–3 nm) 2D Ti3C2Tx with large lateral size of about 8 µm possessing ideal viscoelastic properties are formulated for extrusion‐based 3D printing of freestanding, high specific surface area architectures to determine the viability of manufacturing energy storage devices. The 3D‐printed device achieves a high areal capacitance of 2.1 F cm?2 at 1.7 mA cm?2 and a gravimetric capacitance of 242.5 F g?1 at 0.2 A g?1 with a retention of above 90% capacitance for 10 000 cycles. It also exhibits a high energy density of 0.0244 mWh cm?2 and a power density of 0.64 mW cm?2 at 4.3 mA cm?2. It is anticipated that the sustainable printing and design approach developed in this work can be applied to fabricate high‐performance bespoke multiscale and multidimensional architectures of functional and structural materials for integrated devices in various applications.  相似文献   

17.
Nanostructured graphene electrodes generally have a low density, which can limit the volumetric performance for energy storage devices. The liquid‐phase mild reduction process of graphene oxide sheets is combined with the continuous aerosol densification process to produce high‐density graphene agglomerates in the form of microspheres. The produced graphene assembly shows the cabbage‐like morphology with a high density of 0.75 g cm?3. In spite of such high density, the cabbage‐like graphene microspheres have narrow‐ranged mesopores and a high surface area. The cabbage‐like graphene microsphere exhibits both high gravimetric and volumetric energy densities due to the optimized microstructure, which shows a high gravimetric capacitance of 177 F g?1 and volumetric capacitance of 117 F cm?3 in supercapacitors. As a cathode for lithium‐ion capacitors, the cabbage‐like graphene delivers a reversible capacity of ≈176 mAh g?1. The stacking‐control approach provides a new pathway to control the microstructure of the graphene assembly and corresponding charge storage characteristics for energy storage applications.  相似文献   

18.
Flexible supercapacitors with high electrochemical performance and stability along with mechanical robustness have gained immense attraction due to the substantial advancements and rampant requirements of storage devices. To meet the exponentially growing demand of microsized energy storage device, a cost‐effective and durable supercapacitor is mandatory to realize their practical applications. Here, in this work, the fabrication route of novel electrode materials with high flexibility and charge‐storage capability is reported using the hybrid structure of 1D zinc oxide (ZnO) nanorods and conductive polyvinylidene fluoride‐tetrafluoroethylene (P(VDF‐TrFE)) electrospun nanofibers. The ZnO nanorods are conformably grown on conductive P(VDF‐TrFE) nanofibers to fabricate the light‐weighted porous electrodes for supercapacitors. The conductive nanofibers acts as a high surface area scaffold with significant electrochemical performance, while the addition of ZnO nanorods further enhances the specific capacitance by 59%. The symmetric cell with the fabricated electrodes presents high areal capacitance of 1.22 mF cm?2 at a current density of 0.1 mA cm?2 with a power density of more than 1600 W kg?1. Furthermore, these electrodes show outstanding flexibility and high stability with 96% and 78% retention in specific capacitance after 1000 and 5000 cycles, respectively. The notable mechanical durability and robustness of the cell acquire both good flexibility and high performance.  相似文献   

19.
The development of ordered graphene‐based materials combining high stability, large surface areas, ability to act as absorbent of relevant chemical species, and solution processability is of significance for energy applications. A poorly explored approach relies on the controlled nanostructuration of graphene into robust and highly ordered 3D networks as a route to further leverage the exceptional properties of this unique material. Here, a simple yet effective and scalable one‐step method is reported to prepare graphene‐based 3D covalent networks (G3DCNs) with tunable interlayer distance via controlled polymerization of benzidines with graphene oxide at different reaction temperatures under catalyst‐ and template‐free conditions. The reduced form of G3DCNs is used as electrodes in supercapacitors; it reveals a high specific capacitance of 156 F g?1 at a current density of 1 A g?1 in a two‐electrode configuration and 460 F g?1 at a current density of 0.5 A g?1 in a three‐electrode configuration, combined with an excellent cycling stability over 5000 cycles. The present study will promote the quantitative understanding of structure–property relationship, for the controlled fabrication of 3D graphene‐based multifunctional materials.  相似文献   

20.
The Li–CO2 battery is a promising energy storage device for wearable electronics due to its long discharge plateau, high energy density, and environmental friendliness. However, its utilization is largely hindered by poor cyclability and mechanical rigidity due to the lack of a flexible and durable catalyst electrode. Herein, flexible fiber‐shaped Li–CO2 batteries with ultralong cycle‐life, high rate capability, and large specific capacity are fabricated, employing bamboo‐like N‐doped carbon nanotube fiber (B‐NCNT) as flexible, durable metal‐free catalysts for both CO2 reduction and evolution reactions. Benefiting from high N‐doping with abundant pyridinic groups, rich defects, and active sites of the periodic bamboo‐like nodes, the fabricated Li–CO2 battery shows outstanding electrochemical performance with high full‐discharge capacity of 23 328 mAh g?1, high rate capability with a low potential gap up to 1.96 V at a current density of 1000 mA g?1, stability over 360 cycles, and good flexibility. Meanwhile, the bifunctional B‐NCNT is used as the counter electrode for a fiber‐shaped dye‐sensitized solar cell to fabricate a self‐powered fiber‐shaped Li–CO2 battery with overall photochemical–electric energy conversion efficiency of up to 4.6%. Along with a stable voltage output, this design demonstrates great adaptability and application potentiality in wearable electronics with a breath monitor as an example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号