首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel approach for using conjugated rod–coil materials as a floating gate in the fabrication of nonvolatile photonic transistor memory devices, consisting of n-type Sol-PDI and p-type C10-DNTT, is presented. Sol-PDI and C10-DNTT are used as dual functions of charge-trapping (conjugated rod) and tunneling (insulating coil), while n-type BPE-PDI and p-type DNTT are employed as the corresponding transporting layers. By using the same conjugated rod in the memory layer and transporting channel with a self-assembled structure, both n-type and p-type memory devices exhibit a fast response, a high current contrast between “Photo-On” and “Electrical-Off” bistable states over 105, and an extremely low programing driving force of 0.1 V. The fabricated photon-driven memory devices exhibit a quick response to different wavelengths of light and a broadband light response that highlight their promising potential for light-recorder and synaptic device applications.  相似文献   

2.
We demonstrate a room temperature processed ferroelectric (FE) nonvolatile memory based on a ZnO nanowire (NW) FET where the NW channel is coated with FE nanoparticles. A single device exhibits excellent memory characteristics with the large modulation in channel conductance between ON and OFF states exceeding 10(4), a long retention time of over 4 × 10(4) s, and multibit memory storage ability. Our findings provide a viable way to create new functional high-density nonvolatile memory devices compatible with simple processing techniques at low temperature for flexible devices made on plastic substrates.  相似文献   

3.
The demand for high memory density has increased due to increasing needs of information storage, such as big data processing and the Internet of Things. Organic–inorganic perovskite materials that show nonvolatile resistive switching memory properties have potential applications as the resistive switching layer for next‐generation memory devices, but, for practical applications, these materials should be utilized in high‐density data‐storage devices. Here, nanoscale memory devices are fabricated by sequential vapor deposition of organolead halide perovskite (OHP) CH3NH3PbI3 layers on wafers perforated with 250 nm via‐holes. These devices have bipolar resistive switching properties, and show low‐voltage operation, fast switching speed (200 ns), good endurance, and data‐retention time >105 s. Moreover, the use of sequential vapor deposition is extended to deposit CH3NH3PbI3 as the memory element in a cross‐point array structure. This method to fabricate high‐density memory devices could be used for memory cells that occupy large areas, and to overcome the scaling limit of existing methods; it also presents a way to use OHPs to increase memory storage capacity.  相似文献   

4.
A new Schottky junction ultraviolet photodetector (UVPD) is fabricated by coating a free‐standing ZnO nanorod (ZnONR) array with a layer of transparent monolayer graphene (MLG) film. The single‐crystalline [0001]‐oriented ZnONR array has a length of about 8–11 μm, and a diameter of 100~600 nm. Finite element method (FEM) simulation results show that this novel nanostructure array/MLG heterojunction can trap UV photons effectively within the ZnONRs. By studying the I–V characteristics in the temperature range of 80–300 K, the barrier heights of the MLG film/ZnONR array Schottky barrier are estimated at different temperatures. Interestingly, the heterojunction diode with typical rectifying characteristics exhibits a high sensitivity to UV light illumination and a quick response of millisecond rise time/fall times with excellent reproducibility, whereas it is weakly sensitive to visible light irradiation. It is also observed that this UV photodetector (PD) is capable of monitoring a fast switching light with a frequency as high as 2250 Hz. The generality of the above results suggest that this MLG film/ZnONR array Schottky junction UVPD will have potential application in future optoelectronic devices.  相似文献   

5.
Inspired by the biological neuromorphic system, which exhibits a high degree of connectivity to process huge amounts of information, photonic memory is expected to pave a way to overcome the von Neumann bottleneck for nonconventional computing. Here, a photonic flash memory based on all‐inorganic CsPbBr3 perovskite quantum dots (QDs) is demonstrated. The heterostructure formed between the CsPbBr3 QDs and semiconductor layer serves as a basis for optically programmable and electrically erasable characteristics of the memory device. Furthermore, synapse functions including short‐term plasticity, long‐term plasticity, and spike‐rate‐dependent plasticity are emulated at the device level. The photonic potentiation and electrical habituation are implemented and the synaptic weight exhibits multiple wavelength response from 365, 450, 520 to 660 nm. These results may locate the stage for further thrilling novel advances in perovskite‐based memories.  相似文献   

6.
White-light-controlled resistance switching and photovoltaic effects in TiO2/ZnO composite nanorods array grown on fluorine-doped tin oxide (FTO) substrate by hydrothermal process were investigated. The average length of TiO2/ZnO nanorods is about 3 μm, and the average diameter is about 200 nm. ZnO nanoparticles with size 5–10 nm are embedded in TiO2 base material. The current–voltage characteristics of Ag/[TiO2/ZnO]/FTO device demonstrate an outstanding rectifying property and bipolar resistive switching behavior. Specially, the resistive switching behavior can be regulated by white-light illuminating. In addition, this structure also exhibits a substantial white-light photovoltaic effect. This study is helpful for exploring the multifunctional materials and their applications in nonvolatile multistate memory devices and solar cells.  相似文献   

7.
The rapid development of information technology has led to an urgent need for devices with fast information storage and processing,a high density,and low energy consumption.Memristors are considered to be next-generation memory devices with all of the aforementioned advantages.Recently,organometallic halide perovskites were reported to be promising active materials for memristors,although they have poor stability and mediocre performance.Herein,we report for the first time the fabrication of stable and high-performance memristors based on inorganic halide perovskite (CsPbBr3,CPB).The devices have electric field-induced bipolar resistive switching (ReS) and memory behaviors with a large on/off ratio (>105),low working voltage (<1 V) and energy consumption,long data retention (>104 s),and high environmental stability,which are achieved via ZnO capping within the devices.Such a design can be adapted to various devices.Additionally,the heterojunction between the CPB and ZnO endows the devices with a light-induced ReS effect of more than 103 with a rapid response speed (<1 ms),which enables us to tune the resistance state by changing the light and electric field simultaneously.Such multifunctional devices achieved by the combination of information storage and processing abilities have potential applications for future computing that transcends traditional architectures.  相似文献   

8.
The fabrication of a highly ordered novel ZnO/Si nano‐heterojuntion array is introduced. ZnO seed layer is first deposited on the Si (P<111>) surface. The nucleation sites are then defined by patterning the surface through focused ion beam (FIB) system. The ZnO nanorods are grown on the nucleation sites through hydrothermal process. The whole fabrication process is simple, facile and offers direct control of the space, length and aspect ratio of the array. It is found that ZnO/Si nanojunctions show an improved interface when subjected to heat treatment. The recrystallization of ZnO and the tensile lattice strain of Si developed during the heating process contribute the enhancement of their photoresponses to white light. The photoluminescence (PL) measurement result of nano‐heterojunction arrays with different parameters is discussed.  相似文献   

9.
The resistive switching properties of NiO-based memory cells were investigated utilizing test structures with a storage contact size of 150 nm in diameter. Two well defined stable resistance states with high OFF/ON ratios were achieved by unipolar operation. Detailed electrical characterizations with respect to nonvolatile memory applications reveal fast (< 300 ns) and reliable switching performance at low operating voltages (< 2.5 V). Promising results of endurance data (> 1000 cycles) and retention tests up to 110 °C show excellent stability and indicate the competitive potential with respect to established nonvolatile memory devices.  相似文献   

10.
Due to the near‐field coupling effect, non‐close‐packed nanoparticle (NP) assemblies with tunable interparticle distance (d) attract great attention and show huge potential applications in various functional devices, e.g., organic nano‐floating‐gate memory (NFGM) devices. Unfortunately, the fabrication of device‐scale non‐close‐packed 2D NPs material still remains a challenge, limiting its practical applications. Here, a facile yet robust “rapid liquid–liquid interface assembly” strategy is reported to generate a non‐close‐packed AuNP superlattice monolayer (SM) on a centimeter scale for high‐performance pentacene‐based NFGM. The d and hence the surface plasmon resonance spectra of SM can be tailored by adjusting the molecular weight of tethered polymers. Precise control over the d value allows the successful fabrication of photosensitive NFGM devices with highly tunable performances from short‐term memory to nonvolatile data storage. The best performing nonvolatile memory device shows remarkable 8‐level (3‐bit) storage and a memory ratio over 105 even after 10 years compared with traditional devices with a AuNP amorphous monolayer. This work provides a new opportunity to obtain large area 2D NPs materials with non‐close‐packed structure, which is significantly meaningful to microelectronic, photovoltaics devices, and biochemical sensors.  相似文献   

11.
Song J  Zhang Y  Xu C  Wu W  Wang ZL 《Nano letters》2011,11(7):2829-2834
We demonstrate an innovative memory device made of a single crystalline ZnO nanowire/microwire that works with a different mechanism from the p-n junction based memristor. A nonsymmetric, Schottky-Ohmic contacted ZnO nano/microwire can serve as a memristor if the channel length is short and the applied frequency is high. The observed phenomena could be explained based on a screening model of the polar charges at the two ends of the wire owing to the crystal structure of ZnO. The polar charges are usually fully screened by free electrons coming from the metal sides. But when the magnitude of the externally applied field exceeds a threshold value, the free electrons that screen the polar surfaces can be pulled away from the interface region, leading to a transient change in the effective height of the local Schottky barrier height owing to the electrical field formed by the polar surfaces of ZnO nanowires, which acts as a resistor with its magnitude depending on the total charges being transported. Such a phenomenon could be used for high density and fast writing/erasing data storage.  相似文献   

12.
As conventional flash memory is approaching its fundamental scaling limit, there is an urgent demand for an alternative nonvolatile memory technology at present. Resistance-switching random access memory has attracted extensive interests due to its nonvolatile nature, good scalability, and simple structure. In this work, TiN/ZnO:Mn/Pt junctions, which employ a conductive compound TiN as the top electrode to replace regular metal electrodes, were fabricated and investigated for nonvolatile resistive memory applications. These junctions exhibit bistable resistance state at room temperature, and the devices can be reproducibly switched between the two resistance states by applying bidirectional voltage biases. Moreover, both resistance states are demonstrated to retain for more than 10(4) s without electrical power, demonstrating a nonvolatile nature of the memory device. The mechanism of resistance switching effects in TiN/ZnO:Mn/Pt junctions is interpreted in terms of the drift of oxygen vacancies and the resultant formation/annihilation of local conductive channels through ZnO:Mn/Pt Schottky barrier.  相似文献   

13.
2D van der Waals (vdWs) heterostructures exhibit intriguing optoelectronic properties in photodetectors, solar cells, and light‐emitting diodes. In addition, these materials have the potential to be further extended to optical memories with promising broadband applications for image sensing, logic gates, and synaptic devices for neuromorphic computing. In particular, high programming voltage, high off‐power consumption, and circuital complexity in integration are primary concerns in the development of three‐terminal optical memory devices. This study describes a multilevel nonvolatile optical memory device with a two‐terminal floating‐gate field‐effect transistor with a MoS2/hexagonal boron nitride/graphene heterostructure. The device exhibits an extremely low off‐current of ≈10?14 A and high optical switching on/off current ratio of over ≈106, allowing 18 distinct current levels corresponding to more than four‐bit information storage. Furthermore, it demonstrates an extended endurance of over ≈104 program–erase cycles and a long retention time exceeding 3.6 × 104 s with a low programming voltage of ?10 V. This device paves the way for miniaturization and high‐density integration of future optical memories with vdWs heterostructures.  相似文献   

14.
环保型不溶性偶氮染料在防伪纸中的显色研究   总被引:1,自引:0,他引:1  
李大伟  蒋向东  谢康  曾东 《材料导报》2011,25(2):47-50,53
采用非欧盟禁用不溶性偶氮染料制备一种新型的显色防伪纸。在纸浆中加入固体色酚颗粒,抄纸后在纸基表面上喷上一层色基的重氮盐溶液,干燥。制备出的纸张在滴加酒精后会显现出红色斑点。通过对色基红B、色酚AS-BO(偶合后显红色)用量的控制,以优化出不溶性偶氮染料在纸张上防伪显色的最佳工艺条件。对显色后的纸张进行白度、色差和物理性...  相似文献   

15.
Silicon underpins nearly all microelectronics today and will continue to do so for some decades to come. However, for silicon photonics, the indirect band gap of silicon and lack of adjustability severely limit its use in applications such as broadband photodiodes. Here, a high‐performance p‐Si/n‐ZnO broadband photodiode working in a wide wavelength range from visible to near‐infrared light with high sensitivity, fast response, and good stability is reported. The absorption of near‐infrared wavelength light is significantly enhanced due to the nanostructured/textured top surface. The general performance of the broadband photodiodes can be further improved by the piezo‐phototronic effect. The enhancement of responsivity can reach a maximum of 78% to 442 nm illumination, the linearity and saturation limit to 1060 nm light are also significantly increased by applying external strains. The photodiode is illuminated with different wavelength lights to selectively choose the photogenerated charge carriers (either electrons or holes) passing through the depletion region, to investigate the piezo‐phototronic effect on electron or hole transport separately for the first time. This is essential for studying the basic principles in order to develop a full understanding about piezotronics and it also enables the development of the better performance of optoelectronics.  相似文献   

16.
A novel two‐terminal high‐speed nonvolatile memory device is demonstrated featuring the construction of a quasi‐metal‐insulator‐semiconductor (q‐MIS) architecture. The quasi‐MIS memory takes advantage of an in situ formed amorphous AlOx interfacial layer sandwiched between p‐type ZnS nanoribbons (p‐ZnSNRs) and a Al electrode. Systematical optimization of the AlOx interfacial layer enables the resultant memory to show excellent memory characteristics, including a fast programming speed of <100 ns, a high current ON/OFF ratio of ∼108, a long retention time of 6 × 104 s, and good stability over 12 months. In addition, an interface‐state‐induced mechanism is proposed to elucidate in detail the memory characteristic for the quasi‐MIS structure. This work suggests great potential of such quasi‐MIS architecture for high‐performance two‐terminal memory, and more importantly, signifies the importance of interface engineering for the construction of novel functional nano‐devices.  相似文献   

17.
Broad spectral response and high photoelectric conversion efficiency are key milestones for realizing multifunctional, low-power optoelectronic devices such as artificial synapse and reconfigurable memory devices. Nevertheless, the wide bandgap and narrow spectral response of metal-oxide semiconductors are problematic for efficient metal-oxide optoelectronic devices such as photonic synapse and optical memory devices. Here, a simple titania (TiO2)/indium-gallium-zinc-oxide (IGZO) heterojunction structure is proposed for efficient multifunctional optoelectronic devices, enabling widen spectral response range and high photoresponsivity. By overlaying a TiO2 film on IGZO, the light absorption range extends to red light, along with enhanced photoresponsivity in the full visible light region. By implementing the TiO2/IGZO heterojunction structure, various synaptic behaviors are successfully emulated such as short-term memory/long-term memory and paired pulse facilitation. Also, the TiO2/IGZO synaptic transistor exhibits a recognition rate up to 90.3% in recognizing handwritten digit images. Moreover, by regulating the photocarrier dynamics and retention behavior using gate-bias modulation, a reconfigurable multilevel (≥8 states) memory is demonstrated using visible light.  相似文献   

18.
自驱动光探测器能够在无外加偏压的情况下将光信号转化为电信号, 在工业和军事领域有着广泛的应用。本研究报道了p型Se薄膜和n型ZnO纳米棒阵列异质结的可控合成以及它们作为自驱动紫外-可见光探测器的应用。由于在ZnO和Se的界面处形成的内建电场将光生电子-空穴对分离, 促使它们向相反方向传输, 最终被电极收集, 在0偏压下获得了较高的光电流(435 pA), 从而实现无线的自驱动光电探测。并且, 在Se和ZnO界面处沉积的Al2O3层有效降低了暗电流。最终, 此器件在500 nm的单色光下显示了高响应率55 μA·W -1和大比探测率5×10 10Jones, 并表现出了极快的响应速度(上升时间0.9 ms, 衰减时间0.3 ms)。  相似文献   

19.
Organic field‐effect transistor (OFET) memory devices made using highly stable iron‐storage protein nanoparticle (NP) multilayers and pentacene semiconductor materials are introduced. These transistor memory devices have nonvolatile memory properties that cause reversible shifts in the threshold voltage (Vth) as a result of charge trapping and detrapping in the protein NP (i.e., the ferritin NP with a ferrihydrite phosphate core) gate dielectric layers rather than the metallic NP layers employed in conventional OFET memory devices. The protein NP‐based OFET memory devices exhibit good programmable memory properties, namely, large memory window ΔVth (greater than 20 V), a fast switching speed (10 μs), high ON/OFF current ratio (above 104), and good electrical reliability. The memory performance of the devices is significantly enhanced by molecular‐level manipulation of the protein NP layers, and various biomaterials with heme FeIII/FeII redox couples similar to a ferrihydrite phosphate core are also employed as charge storage dielectrics. Furthermore, when these protein NP multilayers are deposited onto poly(ethylene naphthalate) substrates coated with an indium tin oxide gate electrode and a 50‐nm‐thick high‐k Al2O3 gate dielectric layer, the approach is effectively extended to flexible protein transistor memory devices that have good electrical performance within a range of low operating voltages (<10 V) and reliable mechanical bending stability.  相似文献   

20.
为探讨纳米ZnO/低密度聚乙烯(LDPE)复合材料的介电特性,首先,采用硅烷偶联剂和钛酸酯偶联剂对纳米ZnO进行改性,并利用两步法制备了不同纳米ZnO质量分数、不同纳米ZnO粒径、不同纳米ZnO表面修饰方式和不同冷却方式的纳米ZnO/LDPE复合材料;然后,通过FTIR、SEM、DSC和热激电流(TSC)测试了纳米ZnO在基体中的分散情况、复合材料的等温结晶过程参数变化及陷阱密度;最后,在不同实验温度下分别进行了交流击穿、绝缘电导率、介电常数和空间电荷实验。结果表明:纳米ZnO的加入使纳米ZnO/LDPE复合材料内部陷阱深度和密度均有所增加;当纳米ZnO的粒径为40 nm且质量分数为3%时,复合材料的结晶速度最快,纳米ZnO在基体中的分散性较好,击穿场强达到最高值133.3 kV/mm,电导率及介电常数也相对较低,加压时复合材料内部空间电荷少,短路时释放电荷速度快,介电性能较好;由于纳米粒子增加了材料内部的热传导速率,降低了复合材料随着温度升高而降解的速度,因而相对于纯LDPE,随着实验温度的提高,纳米ZnO/LDPE复合材料的击穿场强下降幅度及电导率上升幅度均较小。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号