首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene, a star 2D material, has attracted much attention because of its unique properties including linear electronic dispersion, massless carriers, and ultrahigh carrier mobility (104–105 cm2 V?1 s?1). However, its zero bandgap greatly impedes its application in the semiconductor industry. Opening the zero bandgap has become an unresolved worldwide problem. Here, a novel and stable 2D Ruddlesden–Popper‐type layered chalcogenide perovskite semiconductor Ca3Sn2S7 is found based on first‐principles GW calculations, which exhibits excellent electronic, optical, and transport properties, as well as soft and isotropic mechanical characteristics. Surprisingly, it has a graphene‐like linear electronic dispersion, small carrier effective mass (0.04 m0), ultrahigh room‐temperature carrier mobility (6.7 × 104 cm2 V?1 s?1), Fermi velocity (3 × 105 m s?1), and optical absorption coefficient (105 cm?1). Particularly, it has a direct quasi‐particle bandgap of 0.5 eV, which realizes the dream of opening the graphene bandgap in a new way. These results guarantee its application in infrared optoelectronic and high‐speed electronic devices.  相似文献   

2.
Molecular engineering of tetraazapentacene with different numbers of fluorine and chlorine substituents fine‐tunes the frontier molecular orbitals, molecular vibrations, and π–π stacking for n‐type organic semiconductors. Among the six halogenated tetraazapentacenes studied herein, the tetrachloro derivative (4Cl‐TAP) in solution‐processed thin‐film transistors exhibits electron mobility of 14.9 ± 4.9 cm2 V?1 s?1 with a maximum value of 27.8 cm2 V?1 s?1, which sets a new record for n‐channel organic field‐effect transistors. Computational studies on the basis of crystal structures shed light on the structure–property relationships for organic semiconductors. First, chlorine substituents slightly decrease the reorganization energy of the tetraazapentacene whereas fluorine substituents increase the reorganization energy as a result of fine‐tuning molecular vibrations. Second, the electron transfer integral is very sensitive to subtle changes in the 2D π‐stacking with brickwork arrangement. The unprecedentedly high electron mobility of 4Cl‐TAP is attributed to the reduced reorganization energy and enhanced electron transfer integral as a result of modification of tetraazapentacene with four chlorine substituents.  相似文献   

3.
Organic electronics based on poly(vinylidenefluoride/trifluoroethylene) (P(VDF‐TrFE)) dielectric is facing great challenges in flexible circuits. As one indispensable part of integrated circuits, there is an urgent demand for low‐cost and easy‐fabrication nonvolatile memory devices. A breakthrough is made on a novel ferroelectric random access memory cell (1T1T FeRAM cell) consisting of one selection transistor and one ferroelectric memory transistor in order to overcome the half‐selection problem. Unlike complicated manufacturing using multiple dielectrics, this system simplifies 1T1T FeRAM cell fabrication using one common dielectric. To achieve this goal, a strategy for semiconductor/insulator (S/I) interface modulation is put forward and applied to nonhysteretic selection transistors with high performances for driving or addressing purposes. As a result, high hole mobility of 3.81 cm2 V?1 s?1 (average) for 2,6‐diphenylanthracene (DPA) and electron mobility of 0.124 cm2 V?1 s?1 (average) for N ,N ′‐1H,1H‐perfluorobutyl dicyanoperylenecarboxydiimide (PDI‐FCN2) are obtained in selection transistors. In this work, we demonstrate this technology's potential for organic ferroelectric‐based pixelated memory module fabrication.  相似文献   

4.
Single‐walled carbon nanotubes (SWCNTs) are a class of 1D nanomaterials that exhibit extraordinary electrical and optical properties. However, many of their fundamental studies and practical applications are stymied by sample polydispersity. SWCNTs are synthesized in bulk with broad structural (chirality) and geometrical (length and diameter) distributions; problematically, all known post‐synthetic sorting methods rely on ultrasonication, which cuts SWCNTs into short segments (typically <1 µm). It is demonstrated that ultralong (>10 µm) SWCNTs can be efficiently separated from shorter ones through a solution‐phase “self‐sorting”. It is shown that thin‐film transistors fabricated from long semiconducting SWCNTs exhibit a carrier mobility as high as ≈90 cm2 V?1 s?1, which is ≈10 times higher than those which use shorter counterparts and well exceeds other known materials such as organic semiconducting polymers (<1 cm2 V?1 s?1), amorphous silicon (≈1 cm2 V?1 s?1), and nanocrystalline silicon (≈50 cm2 V?1 s?1). Mechanistic studies suggest that this self‐sorting is driven by the length‐dependent solution phase behavior of rigid rods. This length sorting technique shows a path to attain long‐sought ultralong, electronically pure carbon nanotube materials through scalable solution processing.  相似文献   

5.
Low‐dimensional high‐quality InSb materials are promising candidates for next‐generation quantum devices due to the high carrier mobility, low effective mass, and large g‐factor of the heavy element compound InSb. Various quantum phenomena are demonstrated in InSb 2D electron gases and nanowires. A combination of the best features of these two systems (pristine nanoscale and flexible design) is desirable to realize, e.g., the multiterminal topological Josephson device. Here, controlled growth of 2D nanostructures, nanoflakes, on an InSb platform is demonstrated. An assembly of nanoflakes with various dimensions and morphologies, thinner than the Bohr radius of InSb, are fabricated. Importantly, the growth of either nanowires or nanoflakes can be enforced experimentally by setting growth and substrate design parameters properly. Hall bar measurements on the nanostructures yield mobilities up to ≈20 000 cm2 V?1 s?1 and detect quantum Hall plateaus. This allows to see the system as a viable nanoscale 2D platform for future quantum devices.  相似文献   

6.
Despite extensive research, large‐scale realization of metal‐oxide electronics is still impeded by high‐temperature fabrication, incompatible with flexible substrates. Ideally, an athermal treatment modifying the electronic structure of amorphous metal oxide semiconductors (AMOS) to generate sufficient carrier concentration would help mitigate such high‐temperature requirements, enabling realization of high‐performance electronics on flexible substrates. Here, a novel field‐driven athermal activation of AMOS channels is demonstrated via an electrolyte‐gating approach. Facilitating migration of charged oxygen species across the semiconductor–dielectric interface, this approach modulates the local electronic structure of the channel, generating sufficient carriers for charge transport and activating oxygen‐compensated thin films. The thin‐film transistors (TFTs) investigated here depict an enhancement of linear mobility from 51 to 105.25 cm2 V?1 s?1 (ionic‐gated) and from 8.09 to 14.49 cm2 V?1 s?1 (back‐gated), by creating additional oxygen vacancies. The accompanying stochiometric transformations, monitored via spectroscopic measurements (X‐ray photoelectron spectroscopy) corroborate the detailed electrical (TFT, current evolution) parameter analyses, providing critical insights into the underlying oxygen‐vacancy generation mechanism and clearly demonstrating field‐induced activation as a promising alternative to conventional high‐temperature annealing strategies. Facilitating on‐demand active programing of the operation modes of transistors (enhancement vs depletion), this technique paves way for facile fabrication of logic circuits and neuromorphic transistors for bioinspired computing.  相似文献   

7.
So far, most of the reported high‐mobility conjugated polymers are p‐type semiconductors. By contrast, the advances in high‐mobility ambipolar polymers fall greatly behind those of p‐type counterparts. Instead of unipolar p‐type and n‐type materials, ambipolar polymers, especially balanced ambipolar polymers, are potentially serviceable for easy‐fabrication and low‐cost complementary metal‐oxide‐semiconductor circuits. Therefore, it is a critical issue to develop high‐mobility ambipolar polymers. Here, three isoindigo‐based polymers, PIID‐2FBT , P1FIID‐2FBT , and P2FIID‐2FBT are developed for high‐performance ambipolar organic field‐effect transistors. After the incorporation of fluorine atoms, the polymers exhibit enhanced coplanarity, lower energy levels, higher crystallinity, and thus increased µ e. P2FIID‐2FBT exhibits n‐type dominant performance with a µ e of 9.70 cm2 V?1 s?1. Moreover, P1FIID‐2FBT exhibits a highly balanced µ h and µ e of 6.41 and 6.76 cm2 V?1 s?1, respectively, which are among the highest values for balanced ambipolar polymers. Moreover, a concept “effective mass” is introduced to further study the reasons for the high performance of the polymers. All the polymers have small effective masses, indicating good intramolecular charge transport. The results demonstrate that high‐mobility ambipolar semiconductors can be obtained by designing polymers with fine‐tuned energy levels, small effective masses, and high crystallinity.  相似文献   

8.
The family of 2D semiconductors (2DSCs) has grown rapidly since the first isolation of graphene. The emergence of each 2DSC material brings considerable excitement for its unique electrical, optical, and mechanical properties, which are often highly distinct from their 3D counterparts. To date, studies of 2DSC are majorly focused on group IV (e.g., graphene, silicene), group V (e.g., phosphorene), or group VIB compounds (transition metal dichalcogenides, TMD), and have inspired considerable effort in searching for novel 2DSCs. Here, the first electrical characterization of group IV–V compounds is presented by investigating few‐layer GeAs field‐effect transistors. With back‐gate device geometry, p‐type behaviors are observed at room temperature. Importantly, the hole carrier mobility is found to approach 100 cm2 V?1 s?1 with ON–OFF ratio over 105, comparable well with state‐of‐the‐art TMD devices. With the unique crystal structure the few‐layer GeAs show highly anisotropic optical and electronic properties (anisotropic mobility ratio of 4.8). Furthermore, GeAs based transistor shows prominent and rapid photoresponse to 1.6 µm radiation with a photoresponsivity of 6 A W?1 and a rise and fall time of ≈3 ms. This study of group IV–V 2DSC materials greatly expands the 2D family, and can enable new opportunities in functional electronics and optoelectronics based on 2DSCs.  相似文献   

9.
Patterning of high‐mobility 2D semiconducting materials with unique layered structures and superb electronic properties offers great potential for batch fabrication and integration of next‐generation electronic and optoelectronic devices. Here, a facile approach is used to achieve accurate patterning of 2D high‐mobility semiconducting Bi2O2Se crystals using dilute H2O2 and protonic mixture acid as efficient etchants. The 2D Bi2O2Se crystal after chemical etching maintains a high Hall mobility of over 200 cm2 V?1 s?1 at room temperature. Centimeter‐scale well‐ordered arrays of 2D Bi2O2Se with tailorable configurations are readily obtained. Furthermore, integrated photodetectors based on 2D Bi2O2Se arrays are fabricated, exhibiting excellent air stability and high photoresponsivity of ≈2000 A W?1 at 532 nm. These results are one step towards the practical application of ultrathin 2D integrated digital and optoelectronic circuits.  相似文献   

10.
Metal halide perovskite has attracted enhanced interest for its diverse electronic and optoelectronic applications. However, the fabrication of micro‐ or nanoscale crystalline perovskite functional devices remains a great challenge due to the fragility, solvent, and heat sensitivity of perovskite crystals. Here, a strategy is proposed to fabricate electronic and optoelectronic devices by directly growing perovskite crystals on microscale metallic structures in liquid phase. The well‐contacted perovskite/metal interfaces ensure these heterostructures serve as high‐performance field effect transistors (FETs) and excellent photodetector devices. When serving as an FET, the on/off ratio is as large as 106 and the mobility reaches up to ≈2.3 cm2 V?1 s?1. A photodetector is displayed with high photoconductive switching ratio of ≈106 and short response time of ≈4 ms. Furthermore, the photoconductive response is proved to be band‐bending‐assisted separation of photoexcited carriers at the Schottky barrier of the silver and p‐type perovskites.  相似文献   

11.
Infrared‐absorbing colloidal quantum dots (IR CQDs) are materials of interest in tandem solar cells to augment perovskite and cSi photovoltaics (PV). Today's best IR CQD solar cells rely on the use of passivation strategies based on lead iodide; however, these fail to passivate the entire surface of IR CQDs. Lead chloride passivated CQDs show improved passivation, but worse charge transport. Lead bromide passivated CQDs have higher charge mobilities, but worse passivation. Here a mixed lead‐halide (MPbX) ligand exchange is introduced that enables thorough surface passivation without compromising transport. MPbX–PbS CQDs exhibit properties that exceed the best features of single lead‐halide PbS CQDs: they show improved passivation (43 ± 5 meV vs 44 ± 4 meV in Stokes shift) together with higher charge transport (4 × 10‐2 ± 3 × 10‐3 cm2 V‐1 s‐1 vs 3 × 10‐2 ± 3 × 10‐3 cm2 V‐1 s‐1 in mobility). This translates into PV devices having a record IR open‐circuit voltage (IR Voc) of 0.46 ± 0.01 V while simultaneously having an external quantum efficiency of 81 ± 1%. They provide a 1.7× improvement in the power conversion efficiency of IR photons (>1.1 µm) relative to the single lead‐halide controls reported herein.  相似文献   

12.
Organic–inorganic perovskites with intriguing optical and electrical properties have attracted significant research interests due to their excellent performance in optoelectronic devices. Recent efforts on preparing uniform and large‐grain polycrystalline perovskite films have led to enhanced carrier lifetime up to several microseconds. However, the mobility and trap densities of polycrystalline perovskite films are still significantly behind their single‐crystal counterparts. Here, a facile topotactic‐oriented attachment (TOA) process to grow highly oriented perovskite films, featuring strong uniaxial‐crystallographic texture, micrometer‐grain morphology, high crystallinity, low trap density (≈4 × 1014 cm?3), and unprecedented 9 GHz charge‐carrier mobility (71 cm2 V?1 s?1), is demonstrated. TOA‐perovskite‐based n‐i‐p planar solar cells show minimal discrepancies between stabilized efficiency (19.0%) and reverse‐scan efficiency (19.7%). The TOA process is also applicable for growing other state‐of‐the‐art perovskite alloys, including triple‐cation and mixed‐halide perovskites.  相似文献   

13.
Here, room‐temperature solution‐processed inorganic p‐type copper iodide (CuI) thin‐film transistors (TFTs) are reported for the first time. The spin‐coated 5 nm thick CuI film has average hole mobility (µFE) of 0.44 cm2 V?1 s?1 and on/off current ratio of 5 × 102. Furthermore, µFE increases to 1.93 cm2 V?1 s?1 and operating voltage significantly reduces from 60 to 5 V by using a high permittivity ZrO2 dielectric layer replacing traditional SiO2. Transparent complementary inverters composed of p‐type CuI and n‐type indium gallium zinc oxide TFTs are demonstrated with clear inverting characteristics and voltage gain over 4. These outcomes provide effective approaches for solution‐processed inorganic p‐type semiconductor inks and related electronics.  相似文献   

14.
Herein, the design and synthesis of novel π‐extended quinoline‐flanked diketopyrrolopyrrole (DPP) [abbreviated as QDPP] motifs and corresponding copolymers named PQDPP‐T and PQDPP‐2FT for high performing n‐type organic field‐effect transistors (OFETs) in flexible organic thin film devices are reported. Serving as DPP‐flankers in backbones, quinoline is found to effectively tune copolymer optoelectric properties. Compared with TDPP and pyridine‐flanked DPP (PyDPP) analogs, widened bandgaps and strengthened electron deficiency are achieved. Moreover, both hole and electron mobility are improved two orders of magnitude compared to those of PyDPP analogs ( PPyDPP‐T and PPyDPP‐2FT ). Notably, featuring an all‐acceptor‐incorporated backbone, PQDPP‐2FT exhibits electron mobility of 6.04 cm2 V?1 s?1, among the highest value in OFETs fabricated on flexible substrates to date. Moreover, due to the widened bandgap and strengthened electron deficiency of PQDPP, n‐channel on/off ratio over 105 with suppressed hole transport is first realized in the ambipolar DPP‐based copolymers.  相似文献   

15.
Control over the morphology and crystallinity of small‐molecule organic semiconductor (OSC) films is of key importance to enable high‐performance organic optoelectronic devices. However, such control remains particularly challenging for solution‐processed OSC devices because of the complex crystallization kinetics of small‐molecule OSC materials in the dynamic flow of inks. Here, a simple yet effective channel‐restricted screen‐printing method is reported, which uses small‐molecule OSCs/insulating polymer to yield large‐grained small‐molecule OSC thin‐film arrays with good crystallization and preferred orientation. The use of cross‐linked organic polymer banks produces a confinement effect to trigger the outward convective flow at two sides of the channel by the fast solvent evaporation, which imparts the transport of small‐molecule OSC solutes and promotes the growth of small‐molecule OSC crystals parallel to the channel. The small‐molecule OSC thin‐film array produced by screen printing exhibits excellent performance characteristics with an average mobility of 7.94 cm2 V?1 s?1 and a maximum mobility of 12.10 cm2 V?1 s?1, which are on par with its single crystal. Finally, screen printing can be carried out using a flexible substrate, with good performance. These demonstrations bring this robust screen‐printing method closer to industrial application and expand its applicability to various flexible electronics.  相似文献   

16.
Black phosphorus carbide (b‐PC) is a new family of layered semiconducting material that has recently been predicted to have the lightest electrons and holes among all known 2D semiconductors, yielding a p‐type mobility (≈105 cm2 V?1 s?1) at room temperature that is approximately five times larger than the maximum value in black phosphorus. Here, a high‐performance composite few‐layer b‐PC field‐effect transistor fabricated via a novel carbon doping technique which achieved a high hole mobility of 1995 cm2 V?1 s?1 at room temperature is reported. The absorption spectrum of this material covers an electromagnetic spectrum in the infrared regime not served by black phosphorus and is useful for range finding applications as the earth atmosphere has good transparency in this spectral range. Additionally, a low contact resistance of 289 Ω µm is achieved using a nickel phosphide alloy contact with an edge contacted interface via sputtering and thermal treatment.  相似文献   

17.
Due to the intriguing optical and electronic properties, 2D materials have attracted a lot of interest for the electronic and optoelectronic applications. Identifying new promising 2D materials will be rewarding toward the development of next generation 2D electronics. Here, palladium diselenide (PdSe2), a noble‐transition metal dichalcogenide (TMDC), is introduced as a promising high mobility 2D material into the fast growing 2D community. Field‐effect transistors (FETs) based on ultrathin PdSe2 show intrinsic ambipolar characteristic. The polarity of the FET can be tuned. After vacuum annealing, the authors find PdSe2 to exhibit electron‐dominated transport with high mobility (µ e (max) = 216 cm2 V?1 s?1) and on/off ratio up to 103. Hole‐dominated‐transport PdSe2 can be obtained by molecular doping using F4‐TCNQ. This pioneer work on PdSe2 will spark interests in the less explored regime of noble‐TMDCs.  相似文献   

18.
Polymer self‐assembly in solution prior to film fabrication makes solution‐state structures critical for their solid‐state packing and optoelectronic properties. However, unraveling the solution‐state supramolecular structures is challenging, not to mention establishing a clear relationship between the solution‐state structure and the charge‐transport properties in field‐effect transistors. Here, for the first time, it is revealed that the thin‐film morphology of a conjugated polymer inherits the features of its solution‐state supramolecular structures. A “solution‐state supramolecular structure control” strategy is proposed to increase the electron mobility of a benzodifurandione‐based oligo(p‐ phenylene vinylene) (BDOPV)‐based polymer. It is shown that the solution‐state structures of the BDOPV‐based conjugated polymer can be tuned such that it forms a 1D rod‐like structure in good solvent and a 2D lamellar structure in poor solvent. By tuning the solution‐state structure, films with high crystallinity and good interdomain connectivity are obtained. The electron mobility significantly increases from the original value of 1.8 to 3.2 cm2 V?1 s?1. This work demonstrates that “solution‐state supramolecular structure” control is critical for understanding and optimization of the thin‐film morphology and charge‐transport properties of conjugated polymers.  相似文献   

19.
Metal halide perovskites represent a family of the most promising materials for fascinating photovoltaic and photodetector applications due to their unique optoelectronic properties and much needed simple and low‐cost fabrication process. The high atomic number (Z) of their constituents and significantly higher carrier mobility also make perovskite semiconductors suitable for the detection of ionizing radiation. By taking advantage of that, the direct detection of soft‐X‐ray‐induced photocurrent is demonstrated in both rigid and flexible detectors based on all‐inorganic halide perovskite quantum dots (QDs) synthesized via a solution process. Utilizing a synchrotron soft‐X‐ray beamline, high sensitivities of up to 1450 µC Gyair?1 cm?2 are achieved under an X‐ray dose rate of 0.0172 mGyair s?1 with only 0.1 V bias voltage, which is about 70‐fold more sensitive than conventional α‐Se devices. Furthermore, the perovskite film is printed homogeneously on various substrates by the inexpensive inkjet printing method to demonstrate large‐scale fabrication of arrays of multichannel detectors. These results suggest that the perovskite QDs are ideal candidates for the detection of soft X‐rays and for large‐area flat or flexible panels with tremendous application potential in multidimensional and different architectures imaging technologies.  相似文献   

20.
Emulation of biological synapses is necessary for future brain‐inspired neuromorphic computational systems that could look beyond the standard von Neuman architecture. Here, artificial synapses based on ionic‐electronic hybrid oxide‐based transistors on rigid and flexible substrates are demonstrated. The flexible transistors reported here depict a high field‐effect mobility of ≈9 cm2 V?1 s?1 with good mechanical performance. Comprehensive learning abilities/synaptic rules like paired‐pulse facilitation, excitatory and inhibitory postsynaptic currents, spike‐time‐dependent plasticity, consolidation, superlinear amplification, and dynamic logic are successfully established depicting concurrent processing and memory functionalities with spatiotemporal correlation. The results present a fully solution processable approach to fabricate artificial synapses for next‐generation transparent neural circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号